Preferred Language
Articles
/
ijs-1431
Influence of Inclined MHD on Unsteady Flow of Generalized Maxwell Fluid with Fractional Derivative between Two Inclined Coaxial Cylinders through a Porous Medium

"This paper presents a study of inclined magnetic field on the unsteady rotating flow of a generalized Maxwell fluid with fractional derivative between two inclined infinite circular cylinders through a porous medium. The analytic solutions for velocity field and shear stress are derived by using the Laplace transform and finite Hankel transform in terms of the generalized G functions. The effect of the physical parameters of the problem on the velocity field is discussed and illustrated graphically.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Impact of Varying Viscosity with Hall Current on Peristaltic Flow of Viscoelastic Fluid Through Porous Medium in Irregular Microchannel

    In this article the peristaltic transport of viscoelastic fluid through irregular microchannel under the effect of Hall current, varying viscosity and porous medium is investigated. The mathematical expressions for the basic flow equations of motion are formulated and transformed into a system of ordinary differential equations by utilizing appropriate non dimensional quantities. The exact solution for the temperature distribution is obtained, while perturbation series solution for the stream function in terms of tiny viscosity parameter is used. Graphical illustrations are  presented to capture the physical impact of embedded parameters in the fluid flow i.e. the fluid velocity field, temperature distribution, pressure rise, and

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
Oscillatory Flow MHD of Jeffrey Fluid with Temperature-Dependent Viscosity (TDV) in a Saturated Porous Channel

In this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number  and are discussed under the different values, as shown in the plots.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Southwest Jiaotong University
Inclined Magnetic Field of Non-uniform and Porous Medium Channel on Couple Stress Peristaltic Flow and application in medical treatment (Knee Arthritis)

The present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 02 2024
Journal Name
Advances In The Theory Of Nonlinear Analysis And Its Application
Properties of Capturing of Peristaltic Flow to A Chemically Reacting Couple Stress Fluid Through an Inclined Asymmetric Channel with Variable Viscosity and Various Boundaries

The properties of capturing of peristaltic flow to a chemically reacting couple stress fluid through an inclined asymmetric channel with variable viscosity and various boundaries are investigated. we have addressed the impacts of variable viscosity, different wave forms, porous medium, heat and mass transfer for peristaltic transport of hydro magnetic couple stress liquid in inclined asymmetric channel with different boundaries. Moreover, The Fluid viscosity assumed to vary as an exponential function of temperature. Effects of almost flow parameters are studied analytically and computed. An rising in the temperature and concentration profiles return to heat and mass transfer Biot numbers. Noteworthy, the Soret and Dufour number effect resul

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Effects of Electrical Conductivity on Fluid Flow between Two Parallel Plates in a Porous Medioum

This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Magnetic Force for Peristaltic Transport of Non-Newtonian Fluid Through Porous Medium in Asymmetric Channel

     In this paper, we study the effects of a magnetic force on the flow of hybrid bio - nano fluid (Cu - Au. NPs) for a peristaltic channel through a porous medium in an asymmetric channel. Nanoparticles of gold and copper as well as the blood (the base fluid) is taken into account. By using the Adomian decomposition method to solve the governing equations, formulas for velocity, stream function, temperature, current density, and magnetic force have been obtained. The findings show that Gold nanoparticles have an elevation magnetic force compared with copper nanoparticles, based on fluid (blood) and hybrid nanofluid. Finally, the phenomenon of trapping is offered as an explanation for the physical behavior of many parameters. The ef

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Influence of Rotation and Inclined Magnetic Field with Mixed Convective Heat and Mass Transfer in an Inclined Symmetric Channel on Peristaltic Flow with Slip Conditions

     In paper, we study the impact of the rotationn inclined magnetic felid and inclined symmetric channel with slip condition on peristaltic transport using incompressible non-Newtonian fluid. Slip conditions for the concentration and heat transfer are considered. We use the conditions on the fluid, namely infinite wavelength and low - Reynolds number to simplify the governed equations that described - motion flow, energy and concentration. These equations ofroblem are solved by the perturbation technique and restricted the number of Bingham to a small value to find the final expression of the stream function. The Bingham number, Brinkman number, Soret number, Dufour number, temperature, Hartman number and other parameters are teste

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
Impacts of Heat and Mass Transfer on Magneto Hydrodynamic Peristaltic Flow Having Temperature-dependent Properties in an Inclined Channel Through Porous Media

In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equatio

... Show More
Scopus (13)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Int. J. Mod. Eng. Res
Exact solutions for MHD flow of a viscoelastic fluid with the fractional Burgers’ model in an annular pipe

This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.

View Publication
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Mhd on Accelerated Flows of A Viscoelastic Fluid with The Fractional Burgers’ Model

In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the se

... Show More
View Publication Preview PDF