The main purpose of this paper is to investigate some results. When h is ï‡ -(ï¬ ,δ) – Derivation on prime Γ-near-ring G and K is a nonzero semi-group ideal of G, then G is commutative .
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria
The main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .