The nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form factors of the C0 component are also calculated for the aforementioned nuclei. The calculated form factor results give predictions for the results of future experiments on electron-radioactive ion beam colliders.
The ground state proton, neutron, and matter density distributions and corresponding root-mean-square (rms) of P19PC exotic nucleus are studied in terms of two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bRcoreR and bRhaloR. According to this model, the core nucleons of P18PC nucleus are assumed to move in the model space of spsdpf. The shell model calculations are carried out for core nucleons with w)20(+ truncations using the realistic WBP
interaction. The outer (halo) neutron in P
19
PC is assumed to move in the pure 2sR1/2R-
orbit. The halo structure in P
19
PC is confirmed with 2sR1/2R-dominant c
توزيعات كثافة البروتون (PDD)، خلافاتهم وتناثر الإلكترون مرنة عوامل الشكل، F (ف) من ارض الدولة لبعض نوى قذيفة، مثل ( 104 المشتريات، 106
... Show MoreThe effects of short-range correlation on elastic Coulomb (charge) form factors, charge density distributions as well as root mean square charge radii of various nuclei (for instance, 46, 48, 50Ti, 52, 54Cr, 56, 58Fe, and 72, 74, 76Ge nuclei) are examined. The one- and two body terms of the cluster expansion together with the single-particle harmonic oscillator wave functions are utilized. For the purpose of embedding these effects into the formulae of charge density and form factor we employ the correlation function of Jastrow-type. These formulae depend upon the short-range correlation parameter (which instigates from the Jastr
... Show MoreAn effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards
... Show MoreElastic electron scattering form factors, charge density distributions and charge,
neutron and matter root mean square (rms) radii for P
24
PMg, P
28
PSi and P
32
PS nuclei are
studied using the effect of occupation numbers. Single-particle radial wave functions
of harmonic-oscillators (HO) potential are used. In general, the results of elastic
charge form factors showed good agreement with experimental data. The occupation
numbers are taken to reproduce the quantities mentioned above. The inclusion of
occupation numbers enhances the form factors to become closer to the data. For the
calculated charge density distributions, the results show good agreement with
experimental data except the fail to
The ground state proton, neutron, and matter density distributions and corresponding root-mean-square radii (rms) of the unstable neutron-rich
22C exotic nucleus are investigated by two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO)
potential are used with two oscillator parameters bcore and bhalo. According to this model, the core nucleons of 20C are assumed to move in the model
space of spsdpf. Shell model calculations are performed with (0+2)hw truncations using Warburton-Brown psd-shell (WBP) interaction. The outer (halo) two neutrons in 22C are assumed to move in HASP (H. Hasper) model space (2s1/2, 1d3/2, 2p3/2, and 1f7/2 orbits) using the HASP interaction. The halo st
An effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I
An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
The ground state charge, proton and matter densities and their rms radii of some Te-isotopes are studied by means of the Skyrme–Hartree–Fock (SHF) method with the Skyrme parameters namely; SKB, SGI, SKM, SKX, MSK7 and SLy4. Also, the neutron skin thickness, the elastic charge form factor and the binding energy per nucleon are calculated in the same framework. The calculated results have been compared with the available experimental data.
PACS Nos.: 21.10.Ft, 25.30.Bf
The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show More