In this paper, we generalized the principle of Banach contractive to the relative formula and then used this formula to prove that the set valued mapping has a fixed point in a complete partial metric space. We also showed that the set-valued mapping can have a fixed point in a complete partial metric space without satisfying the contraction condition. Additionally, we justified an example for our proof.
In this paper, we introduced some fact in 2-Banach space. Also, we define asymptotically non-expansive mappings in the setting of 2-normed spaces analogous to asymptotically non-expansive mappings in usual normed spaces. And then prove the existence of fixed points for this type of mappings in 2-Banach spaces.
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
Modeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show MoreThis article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, oor, D- iterations, and *- iteration for new contraction mappings called quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *- iteration) equivalent to approximate fixed points of quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type by employing zenali iteration also discussed.
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
In this paper, we extend the work of our proplem in uniformly convex Banach spaces using Kirk fixed point theorem. Thus the existence and sufficient conditions for the controllability to general formulation of nonlinear boundary control problems in reflexive Banach spaces are introduced. The results are obtained by using fixed point theorem that deals with nonexpanisive mapping defined on a set has normal structure and strongly continuous semigroup theory. An application is given to illustrate the importance of the results.
The focus of this article, reviewed a generalized of contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed point and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes ,two-step schemes and three step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, noor scheme algorithm, .scheme algorithm, scheme algorithm Modified scheme algorithm arahan scheme algorithm and others. The convergence of these schemes has been studied .On the other hands, We also reviewed the convergence, valence and stability theories of different types of near-plots in convex metric space.
The objective of this work is to study the concept of a fuzzy -cone metric space And some related definitions in space. Also, we discuss some new results of fixed point theorems. Finally, we apply the theory of fixed point achieved in the research on an integral type.
The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,