In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.
Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function
... Show MoreThe purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
Improvement of optoelectrical characteristics of phosphorus diffused silicon photodiodes by Q-switched Nd:YAG laser pulses was investigated. Laser pulses have dissolved the precipitation of phosphorus resulted during thermal diffusion process. The experimental data show that responsivity higher than (0.32 A/W) at 850 nm can be achieved after laser annealing with (1.5 MW/cm2) for 6 shots.
It is well known that the wreath product is the endmorphism monoid of a free S-act with n-generators. If S is a trivial semigroup then is isomorphic to . The extension for to where is an independent algebra has been investigated. In particular, we consider is to be , where is a free left S-act of n-generators. The eventual goal of this paper is to show that is an endomorphism monoid of a free left S-act of n-generators and to prove that is embedded in the wreath product .
In this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th
... Show MoreIn this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required
The main purpose of this paper, is to introduce a topological space , which is induced by reflexive graph and tolerance graph , such that may be infinite. Furthermore, we offered some properties of such as connectedness, compactness, Lindelöf and separate properties. We also study the concept of approximation spaces and get the sufficient and necessary condition that topological space is approximation spaces.
The topic of modulus of smoothness still gets the interest of many researchers due to its applicable usage in different fields, especially for function approximation. In this paper, we define a new modulus of smoothness of weighted type. The properties of our modulus are studied. These properties can be easily used in different fields, in particular, the functions in the Besov spaces when