Preferred Language
Articles
/
ijs-1319
A Study of Stability of First-Order Delay Differential Equations Using Fixed Point Theorem Banach

     In this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation

     where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
Crossref (7)
Crossref
View Publication
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Improved High order Euler Method for Numerical Solution of Initial value Time- Lag Differential Equations

The goal of this paper is to expose a new numerical method for solving initial value time-lag of delay differential equations by employing a high order improving formula of Euler method known as third order Euler method. Stability condition is discussed in detail for the proposed technique. Finally some examples are illustrated to verify the validity, efficiency and accuracy of the method.

View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solving Fuzzy Differential Equations by Using Power Series

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
International J. Of Math. Sci. & Engg. Appls.
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Application of delay integral equations in population growth

In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation of the First Order

  In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented.      The numerical solution of these equations is obtained by using Open Newton Cotes formula.      The Open Newton Cotes formula is applied to find the optimum solution for this equation.      The computer program is written in (MATLAB) language (version 6)

View Publication Preview PDF
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Implementations Special Third-Order Ordinary Differential Equations (ODE) for 5th-order 3rd-stage Diagonally Implicit Type Runge-Kutta Method (DITRKM)

The derivation of 5th order diagonal implicit type Runge Kutta methods (DITRKM5) for solving 3rd special order ordinary differential equations (ODEs) is introduced in the present study. The DITRKM5 techniques are the name of the approach. This approach has three equivalent non-zero diagonal elements. To investigate the current study, a variety of tests for five various initial value problems (IVPs) with different step sizes h were implemented. Then, a comparison was made with the methods indicated in the other literature of the implicit RK techniques. The numerical techniques are elucidated as the qualification regarding the efficiency and number of function evaluations compared with another literature of the implic

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Italian Journal Of Pure And Applied Mathematics
Banach gamma-algebra modules and full stability

In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.

Scopus
View Publication
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Series Solutions of Delay Integral Equations via a Modified Approach of Homotopy Analysis Method

In this paper, the series solutions of a non-linear delay integral equations are considered by a modified approach of homotopy analysis method (MAHAM). We split the function   into infinite sums. The outcomes of the illustrated examples are included to confirm the accuracy and efficiency of the MAHAM. The exact solution can be obtained using special values of the convergence parameter.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF