Preferred Language
Articles
/
ijs-1319
A Study of Stability of First-Order Delay Differential Equations Using Fixed Point Theorem Banach

     In this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation

     where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
An Investigation Study of Thinning Distribution in Single Point Incremental Forming Using FEM Analysis

Single Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.

This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Periodic Solutions For Nonlinear Systems of Multiple Integro-differential Equations that Contain Symmetric Matrices with Impulsive Actions

This paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering ,  and  are real numbers between 0 and 1.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Order Sum Graph of a Group

The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.

Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of a Power System Transient Stability Using Static Synchronous Series Compensator SSSC

Static Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of the active power flow and the transient stability.

View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Modern Trends In Engineering And Research
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Integral transforms defined by a new fractional class of analytic function in a complex Banach space
Abstract<p>In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.</p>
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Covering Theorem for Finite Nonabelian Simple Groups

In this paper, we show that for the alternating group An, the class C of n- cycle, CC covers An for n when n = 4k + 1 > 5 and odd. This class splits into two classes of An denoted by C and C/, CC= C/C/ was found.

View Publication Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Compare Prediction by Autoregressive Integrated Moving Average Model from first order with Exponential Weighted Moving Average

The prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 15 2023
Journal Name
Journal Of Baghdad College Of Dentistry
Cavity preparation model in rat maxillary first molars: A pilot study

Objective: To conduct a standardized method for cavity preparation on the palatal surface of rat maxillary molars and to introduce a standardized method for tooth correct alignment within the specimen during the wax embedding procedure to better detect cavity position within the examined slides. Materials and methods: Six male Wistar rats, aged 4-6 weeks, were used. The maxillary molars of three animals were sectioned in the frontal plane to identify the thickness of hard tissue on the palatal surface of the first molar which was (250-300µm). The end-cutting bur (with a cutting head diameter of 0.2mm) was suitable for preparing a dentinal cavity (70-80µm) depth. Cavity preparation was then performed using the same bur on the tooth surf

... Show More
Scopus Crossref
View Publication Preview PDF