Preferred Language
Articles
/
ijs-1319
A Study of Stability of First-Order Delay Differential Equations Using Fixed Point Theorem Banach

     In this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation

     where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Some Theorems of Fixed Point Approximations By Iteration Processes
Abstract<p>The purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration, <italic>M</italic> <sup>∗</sup> −iteration, <italic>k</italic> −iteration, and Noor-iteration, for approximation of fixed points. We show that the new iteration process is faster than the existing leading iteration processes like <italic>M</italic> <sup>∗</sup> −iteration, <italic>k</italic> −iteration, and Noor-iteration process, for like contraction mappings. We support our analytic proof with a numerical example.</p>
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Zenali Iteration Method For Approximating Fixed Point of A δZA - Quasi Contractive mappings

This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations  like Mann, Ishikawa, oor, D- iterations, and *-  iteration for new contraction mappings called  quasi contraction mappings. And we  proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *-  iteration) equivalent to approximate fixed points of  quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type  by employing zenali iteration also discussed.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of Second Order Half Linear Neutral Dynamic Equations

     The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Italian Journal Of Pure And Applied Mathematics
A note on (m, n)-full stability Banach algebra modules relative to an ideal H of Am×n

In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given

Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
numerical solution of nth order linear dealy differential

in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner

View Publication Preview PDF
Publication Date
Fri Feb 12 2016
Journal Name
International Journal Of Advanced Statistics And Probability
Two fixed point theorems in generalized metric spaces

<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>

Crossref
View Publication
Publication Date
Sun Dec 07 2008
Journal Name
Baghdad Science Journal
Oscillation of Nonlinear Differential Equations with Advanced Arguments

This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.

Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Best Proximity Point Theorem for α ̃–ψ ̃-Contractive Type Mapping in Fuzzy Normed Space

The best proximity point is a generalization of a fixed point that is beneficial when the contraction map is not a self-map. On other hand, best approximation theorems offer an approximate solution to the fixed point equation . It is used to solve the problem in order to come up with a good approximation. This paper's main purpose is to introduce new types of proximal contraction for nonself mappings in fuzzy normed space and then proved the best proximity point theorem for these mappings. At first, the definition of fuzzy normed space is given. Then the notions of the best proximity point and - proximal admissible in the context of fuzzy normed space are presented. The notion of α ̃–ψ ̃- proximal contractive mapping is introduced.

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF