Preferred Language
Articles
/
ijs-1256
Homotopy Perturbation Method and Convergence Analysis for the Linear Mixed Volterra-Fredholm Integral Equations
...Show More Authors

In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Application of delay integral equations in population growth
...Show More Authors

In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
The Analytic Solutions of Nonlinear Generalized Pantograph Differential Equations of Higher Order Via Coupled Adomian-Homotopy Technique
...Show More Authors

     In this study, an efficient novel technique is presented to obtain a more accurate analytical solution to nonlinear pantograph differential equations. This technique combines the Adomian decomposition method (ADM) with the homotopy analysis method concepts (HAM). The whole integral part of HAM is used instead of an integral part of ADM approach to get higher accurate results. The main advantage of this technique is that it  gives a large and more extended convergent region of iterative approximate solutions for long time intervals that rapidly converge to the exact solution. Another advantage is capable of providing a continuous representation of the approximate solutions, which gives  better information over whole time interv

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Numerical and Analytical Solutions of Space-Time Fractional Partial Differential Equations by Using a New Double Integral Transform Method
...Show More Authors

  This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of Stochastic Fredholm Integral Equation Contains a Known Sine Wave Function
...Show More Authors

Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Statistical Characteristics Depending on the Maximum Variance of Solution of Two Dimensional Stochastic Fredholm Integral Equation contains Two Gamma Processes
...Show More Authors

   In this paper, we find the two solutions of two dimensional stochastic Fredholm integral equations contain two gamma processes differ by the parameters in two cases and equal in the third are solved by the Adomain decomposition method. As a result of the solutions probability density functions and their variances at the time t are derived by depending upon the maximum variances of each probability density function with respect to the three cases. The auto covariance and the power spectral density functions are also derived. To indicate which of the three cases is the best, the auto correlation coefficients are calculated.

View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
New Iterative Method for Solving Nonlinear Equations
...Show More Authors

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions of Fractional Integral and Fractional Integrodifferential Equations
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.

View Publication Preview PDF