In this paper, the homotopy perturbation method is presented for solving the second kind linear mixed Volterra-Fredholm integral equations. Then, Aitken method is used to accelerate the convergence. In this method, a series will be constructed whose sum is the solution of the considered integral equation. Convergence of the constructed series is discussed, and its proof is given; the error estimation is also obtained. For more illustration, the method is applied on several examples and programs, which are written in MATLAB (R2015a) to compute the results. The absolute errors are computed to clarify the efficiency of the method.
In this paper, the oscillatory and nonoscillatory qualities for every solution of fourth-order neutral delay equation are discussed. Some conditions are established to ensure that all solutions are either oscillatory or approach to zero as . Two examples are provided to demonstrate the obtained findings.
The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti
Four samples of the Se55S20Sb15Sn10 alloy were prepared using the melting point method. Samples B, C and D were irradiated with (6.04×1010, 12.08×1010 and 18.12×1010 (n.cm-2s -1 ) of thermal neutron beam from a neutron source (241Am-9Be) respectively, while sample A was left not irradiated. The electrical properties were assessed both before and after the radiation. All irradiated and non-irradiated samples show three conduction mechanisms, at low temperatures, electrical conductivity is achieved by electron hopping between local states near the Fermi level. At intermediate temperatures, conduction occurs by the jumping of electrons between local states at band tails. At high temperatures, electrons transfer between extended stat
... Show MoreThis paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule of -module is called z-small ( if whenever , then . Also, is called a z-small quasi-Dedekind module if for all implies . We also describe some of their properties and characterizations. Finally, some examples are given.
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreIn this work, nonlinear diabetes controlled model with and without complications in a population is considered. The dynamic behavior of diabetes in a population by including a constant control is studied and investigated. The existence of all its possible fixed points is investigated as well as the conditions of the local stability of the considered model are set. We also find the optimal control strategy in order to reduce the number of people having diabetes with complications over a finite period of time. A numerical simulation is provided and confirmed the theoretical results.
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
Four molecular imprinted polymer (MIP) membranes for Mebeverine.HCl (MBV.HCl) were prepared based on PVC matrix. The imprinted polymers were prepared by polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) as monomer, pentaerythritoltriacrylate (PETRA) as a cross linker ,benzoyl peroxide (BPO) as an initiator and mebeverine as a template. Four different types of plasticizers of different viscosities were used and the electrodes were fully characterized in terms of plasticizer type, response time, lifetime, pH and detection limit.
The MBV-MIP electrodes exhibited Nernstian response in concentration range from 1.0×10-6 to1.0×10-1 M with slopes of 13.98, 19.60, -20.43 and 19.01 mV/ decade. The detection limit and qua