Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
The theories of metric spaces and fuzzy metric spaces are crucial topics in mathematics.
Compactness is one of the most important and fundamental properties that have been widely used in Functional Analysis. In this paper, the definition of compact fuzzy soft metric space is introduced and some of its important theorems are investigated. Also, sequentially compact fuzzy soft metric space and locally compact fuzzy soft metric space are defined and the relationships between them are studied. Moreover, the relationships between each of the previous two concepts and several other known concepts are investigated separately. Besides, the compact fuzzy soft continuous functions are studie
... Show MoreIn this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.