In this paper, we define two operators of summation and summation-integral of q-type in two dimensional spaces. Firstly, we study the convergence of these operators and then we prove Voronovskaya- type asymptotic formulas for these operators.
In this paper, we define a cubic bipolar subalgebra, $BCK$-ideal and $Q$-ideal of a $Q$-algebra, and obtain some of their properties and give some examples. Also we define a cubic bipolar fuzzy point, cubic bipolar fuzzy topology, cubic bipolar fuzzy base and for each concept obtained some of its properties.
In this work, polynomials and the finite q-exponential operator are constructed. The operator is used to combine an operator proof of the generating function with its extension, Mehler's formula with its extension and Roger's formula for the polynomials . The generating function with its extension, Mehler's formula with its extension and Rogers formula for Al-Salam-Carlitz polynomials are deduced by giving special values to polynomials .
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
This article contains a new generalizations of Ϻ-hyponormal operators which is namely (Ϻ,θ)-hyponormal operator define on Hilbert space H. Furthermore, we investigate some properties of this concept such as the product and sum of two (Ϻ, θ)-hyponormal operators, At the end the operator equation where , has been used for getting several characterization of (Ϻ,θ)-hyponormal operators.
Copulas are very efficient functions in the field of statistics and specially in statistical inference. They are fundamental tools in the study of dependence structures and deriving their properties. These reasons motivated us to examine and show various types of copula functions and their families. Also, we separately explain each method that is used to construct each copula in detail with different examples. There are various outcomes that show the copulas and their densities with respect to the joint distribution functions. The aim is to make copulas available to new researchers and readers who are interested in the modern phenomenon of statistical inferences.
The effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.
In this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.
High Q-factor based on absorption can be achieved by tuning (the reflection and the transition percentage). In this work, the simple design and simulated in S-band have been investigated. The simulation results of G-shape resonator are shown triple band of absorption peaks 60%, 91.5%, and 70.3%) at resonance frequency 2.7 GHz, 3.26 GHz, and 4.05 GHz respectively. The results exhibited very high of the Q-factor ( 271 ) at resonance frequency ( 3.26 GHz ). The high Q-factor can be used to enhance the sensor sensing, narrowband band filter and image sensing.
Autorías: Mustafa Abdulamir Hussain, Ahmed Sebeaatea Almujamay, Riyadh khaleel khammas. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 5, 2022. Artículo de Revista en Dialnet.