Preferred Language
Articles
/
ijs-12438
Classification of Cardiac Arrhythmia using ID3 Classifier Based on Wavelet Transform
...Show More Authors

Accurate detection of Electro Cardio Graphic (ECG) features is an important demand for medical purposes, therefore an accurate algorithm is required to detect these features. This paper proposes an approach to classify the cardiac arrhythmia from a normal ECG signal based on wavelet decomposition and ID3 classification algorithm. First, ECG signals are denoised using the Discrete Wavelet Transform (DWT) and the second step is extract the ECG features from the processed signal. Interactive Dichotomizer 3 (ID3) algorithm is applied to classify the different arrhythmias including normal case. Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database is used to evaluate the ID3 algorithm. The experimental result shows that the accuracy of ID3 is 92% in the case of Haar transform and 94% with Daubeshies4 transform.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 30 2012
Journal Name
Al-kindy College Medical Journal
Success rate of Percutaneous Coronary Intervention of Chronic Total Occlusion in Ibn Al-Baitar Hospital for cardiac surgery and Al-Nassyeria cardiac center
...Show More Authors

Back ground: Chronic total occlusion (CTO) of coronary arteries remains one of the most challenging lesion subsets in interventional cardiology even with the development of medical devices and operator expertise. Successful revascularization results in improved in angina status ,increased exercise capacity and reduces the need for lat CABG surgery .
Objectives: This study sought to determine the overall procedural success rate of percutaneous coronary intervention (PCI) for CTOs and to examine the relation between variables such as; patients’ characteristics, risk factors, lesion characteristics and procedural success rate.
Methods: In this study ,clinical and coronary angiography data of (80) patients with CTO who underwent PCI

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Improving Accuracy in Human Age Classification Using Ensemble Learning Techniques
...Show More Authors

     Age is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to  ensemble techniques that increases th

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
Monitoring of environmental variations of marshes in Iraq using Adaptive classification method.
...Show More Authors

The object of the presented study was to monitor the changes that had happened
in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To
fulfill this goal, different satellite images had been used in different times, MSS
1973, TM 1990, ETM+ 2000 and MODIS 2010. K-Means which is unsupervised
classification and Neural Net which is supervised classification was used to classify
the satellite images 0Tand finally by use 0Tadaptive classification 0Twhich is0T3T 0T3Tapply
s0Tupervised classification on the unsupervised classification. ENVI soft where used
in this study.

View Publication Preview PDF
Publication Date
Sat Oct 05 2019
Journal Name
Pediatric Cardiology
Personalised Warfarin Dosing in Children Post-cardiac Surgery
...Show More Authors
Abstract<p>Warfarin dosing is challenging due to a multitude of factors affecting its pharmacokinetics (PK) and pharmacodynamics (PD). A novel personalised dosing algorithm predicated on a warfarin PK/PD model and incorporating CYP2C9 and VKORC1 genotype information has been developed for children. The present prospective, observational study aimed to compare the model with conventional weight-based dosing. The study involved two groups of children post-cardiac surgery: Group 1 were warfarin naïve, in whom loading and maintenance doses were estimated using the model over a 6-month duration and compared to historical case-matched controls. Group 2 were already established on maintenance therapy a</p> ... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Detection of Road Traffic Congestion Using V2V Communication Based on IoT
...Show More Authors

Intelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emerge

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Wed Jan 12 2022
Journal Name
Iraqi Journal Of Science
Classification of Iraqi Anber Rice by Using Image Processing and KNN Algorithm
...Show More Authors

Image classification takes a large area in computer vision in term of quality or type or data sharing and so on Iraqi Anber Rice in they need this kind of work, where few in the field of computer science that deal with the types of Iraqi Anber rice, and because of the Anber Rice are grown and produced in Iraq only, and because of the importance of rice around the world and especially in Iraq. In this paper a proposed system distinguishes between the classes of Iraqi Anber Rice that Grown in different parts of Iraq, and have their own specifications for each class by using moment invariant and KNN algorithm. Iraqi Anber Rice that is more than Fiftieth class Cultivated and irrigated in different parts of Iraq, and because of the different

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
A Mathematical Approach for Computing the Linear Equivalence of a Periodic Key-Stream Sequence Using Fourier Transform
...Show More Authors

A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.