Preferred Language
Articles
/
ijs-12362
On Reverse – Centralizers Of Semiprime Rings
...Show More Authors

In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
A Jordan Higher Reverse Left (resp. right) Centralizer on Prime -Rings
...Show More Authors

In this paper,  we introduce the concepts of  higher reverse left (resp.right)   centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of  G-rings. We prove that every Jordan higher reverse left (resp. right) centralizer of a 2-torsion free prime G-ring M is a higher reverse left (resp. right) centralizer of  M.

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 29 2019
Journal Name
Iraqi Journal Of Science
Dependent Element and Free Actions of Centralizer and Reverse Centralizer on Prime and Semiprime Semirings
...Show More Authors

     This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime Г-Rings .
...Show More Authors

In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime    Г-ring ,  and  are orthogonal generalized symmetric higher bi-derivations  associated with symmetric higher bi-derivations   respectively for all n ϵN.

View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
Orthogonal Symmetric Higher bi-Derivations on Semiprime Г-Rings
...Show More Authors

   Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.

View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Commutativity Results for Multiplicative (Generalized) (α,β) Reverse Derivations on Prime Rings
...Show More Authors

Let  be a prime ring,  be a non-zero ideal of  and   be automorphism on. A mapping  is called a multiplicative (generalized)  reverse derivation if  where  is any map (not necessarily additive). In this paper, we proved the commutativity of a prime ring R admitting a multiplicative (generalized)  reverse derivation  satisfying any one of the properties:

 

 

 for all x, y  

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Generalized Commuting Mapping in Prime and Semiprime Rings
...Show More Authors

     Let R be an associative ring. The essential purpose of the present paper is to introduce the concept of generalized commuting mapping of R. Let U be a non-empty subset of R, a mapping   : R  R is called a generalized commuting mapping on U if there exist a mapping :R R such that =0, holds for all U. Some results concerning the new concept are presented.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
On Г-n- (Anti ) Generalized Strong Commutativity Preserving Maps for Semiprime Γ-Rings
...Show More Authors

      In this study, we prove that let N be a fixed positive integer and R be a semiprime -ring with extended centroid . Suppose that additive maps  such that  is onto,  satisfy one of the following conditions  belong to Г-N- generalized strong commutativity preserving for short; (Γ-N-GSCP) on R   belong to Г-N-anti-generalized strong commutativity preserving for short; (Γ-N-AGSCP)  Then there exists an element  and  additive maps  such that  is of the form  and   when condition (i) is satisfied, and     when condition (ii) is satisfied   

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Iraqi Journal Of Science
On (m,n) (U,R) – Centralizers
...Show More Authors

Let m ≥ 1,n ≥ 1 be fixed integers and let R be a prime ring with char (R) ≠2 and
(m+n). Let T be a (m,n)(U,R)-Centralizer where U is a Jordan ideal of R and T(R)
⊆ Z(R) where Z(R) is the center of R ,then T is (U,R)- Centralizer.

View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Semi-group Ideals on prime and semiprime Γ-Near - Rings with Γ- (λ,δ) – derivations
...Show More Authors
Abstract<p>Let h is Γ<sub>−(λ,δ) –</sub> derivation on prime Γ<sub>−</sub>near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ<sub>−</sub>hom. or acts like anti–Γ<sub>−</sub>hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.</p>
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Fully Semiprime Submodules and Fully Semiprime Modules
...Show More Authors

   Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever XXW for all fully invariant R-submodule X of M, implies XW.         M is called fully semiprime if (0) is a fully semiprime submodule of M. We give basic properties of these concepts. Also we study the relationships between fully semiprime submodules (modules) and other related submodules (modules) respectively.

View Publication Preview PDF