Preferred Language
Articles
/
ijs-12358
Longitudinal and Transverse Electron Scattering Form Factors for 13C Nucleus with Core-Polarization Effects

Inelastic electron scattering have been studied for (3.68 )
2
1
2
3
MeV

,
(7.55 )
2
1
2
5
MeV

(15.11 )
2
3
2
3
MeV

states in the 13C nucleus. 4He is considered as an inert core with
nine nucleons out of it (the model space of nucleus). Form factors are calculated by
using Cohen-Kurath interaction for 1p-shell model space with Modified Surface
Delta Interaction (MSDI) as a residual interaction for higher configuration. The
study of core-polarization effects on the form factors is based on microscopic
theory, which combines shell model wave functions and configurations with higher
energy as the first order perturbation. The radial wave functions for the singleparticle
matrix elements have been calculated with the harmonic oscillator potential
and the oscillator length parameter b is chosen to reproduce the measured root mean
square charge radius for nucleus under considered in this work. The inclusion of the
core-polarization effects (the effects from out of the core) gives a good agreement
with the experimental data.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 24 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering form Factors for Some Halo Nuclei

The nuclear matter density distributions, elastic electron scattering charge form
factors and root-mean square (rms) proton, charge, neutron and matter radii are
studied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. The
local scale transformation (LST) are used to improve the performance radial wave
function of harmonic-oscillator wave function in order to generate the long tail
behavior appeared in matter density distribution at high . A good agreement results
are obtained for aforementioned quantities in the used model.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Nucleon momentum distributions and elastic electron scattering form factors for 48Ti and 54Fe nuclei

The nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Nucleon momentum distributions and elastic electron scattering form factors for 50Cr, 52Cr and 54Cr isotopes

In the framework of correlation method so-called coherent density fluctuation model (CDFM) the nucleon momentum distributions (NMD) of the ground state for some even mass nuclei of fp-shell like 50Cr, 52Cr and 54Cr isotopes are examined. Nucleon momentum distributions are expressed in terms of the fluctuation function (|f(x)|2) which is evaluated by means of the nucleon density distributions (NDD) of the nuclei and determined from theory and experiment. The main characteristic feature of the NMD obtained by CDFM is the existence of high-momentum components, for momenta k ≥ 2 fm−1. For completeness, also elastic electron scattering form factors, F(q) are evaluated within the same framework.

View Publication Preview PDF
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Inelastic electron scattering form factors involving the second excited 2+ level in the isotopes 50,54,52Cr

An expression for the transition charge density is investigated where the deformation in nuclear collective modes is taken into consideration besides the shell model transition density. The inelastic longitudinal form factors C2 calculated using this transition charge density with excitation of the levels for Cr54,52,50 nuclei. In this work, the core polarization transition density is evaluated by adopting the shape of Tassie model together with the derived form of the ground state two-body charge density distributions (2BCDD's). It is noticed that the core polarization effects which represent the collective modes are essential in obtaining a remarkable agreement between the calculated inelastic longitudinal F(q)'s and those of experimen

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei

An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Charge density distributions and electron scattering form factors of 25Mg, 27Al and 29Si nuclei

An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Charge density distributions and electron scattering form factors of 19F, 22Ne and 26Mg nuclei

An effective two-body density operator for point nucleon system folded with the
tenser force correlations ( TC's), is produced and used to derive an explicit form for
ground state two-body charge density distributions (2BCDD's) applicable for
19F,22Ne and 26Mg nuclei. It is found that the inclusion of the two-body TC's has the
feature of increasing the central part of the 2BCDD's significantly and reducing the
tail part of them slightly, i.e. it tends to increase the probability of transferring the
protons from the surface of the nucleus towards its centeral region and consequently
makes the nucleus to be more rigid than the case when there is no TC's and also
leads to decrease the
1/ 2
2 r of the nucleus. I

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Density Distributions and Elastic Electron Scattering Form Factors of Proton-rich 8B, 17F, 17Ne, 23Al and 27P Nuclei

In this work, the nuclear density distributions, size radii and elastic electron scattering form factors are calculated for proton-rich 8B, 17F, 17Ne, 23Al and 27P nuclei using the radial wave functions of Woods-Saxon potential. The parameters of such potential for nuclei under study are generated so as to reproduce the experimentally available size radii and binding energies of the last nucleons on the Fermi surface.

Scopus (10)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Elastic Electron Scattering From Unstable Neutron-Rich P19PC Exotic Nucleus

The ground state proton, neutron, and matter density distributions and corresponding root-mean-square (rms) of P19PC exotic nucleus are studied in terms of two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bRcoreR and bRhaloR. According to this model, the core nucleons of P18PC nucleus are assumed to move in the model space of spsdpf. The shell model calculations are carried out for core nucleons with w)20(+ truncations using the realistic WBP
interaction. The outer (halo) neutron in P
19
PC is assumed to move in the pure 2sR1/2R-
orbit. The halo structure in P
19
PC is confirmed with 2sR1/2R-dominant c

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Longitudinal Form Factors and Quadrupole Moments of 22,26Na Isotopes with Different Interactions

     The longitudinal electron scattering form factors and the electric quadrupole moments are calculated for the states with Jπ T= 3+0 (ground state) and 1+ 0 (583keV excited state) of 22Na and Jπ T= 3+2 (ground state) of 26Na. Shell model calculations are based on USDA, USDB and Wildenthal interactions. The exact center of mass correction is included in Born approximation picture to generate the longitudinal form factors. The core polarization (CP) effect with the values of effective nucleon charges ep=1.35, en= 0.35, with Bohr Mottelson formula gave a good agreement with the measured electric quadrupole moments. The structure of th

... Show More
Crossref
View Publication