Pomegranate peels were used to remove zinc, chromium and nickel from industrial wastewater. Three forms of these peels (fresh, dried small pieces and powder) were tested under some environmental factors such as pH, temperature and contact time.
The obtained results showed that these peels are capable of removing zinc, chromium and nickel ions at significant capacities. The powder of the peels had the highest capability in bioremoving all zinc, chromium and nickel ions while dried peels had the lowest capacity again for all metals under test. However, the highest capacities were found in a sequence of chromium, nickel and zinc. Furthermore, all these data were significantly (LSD peel forms = 2.761 mg/l, LSD metal ions = 1.756 mg/l) varied.
In case of chromium, these figures were 69.7 ± 0.9 mg/l, 58.0 ± 2.4 mg/l and 49.7 ± 0.5 mg/l for powder, fresh and dried peels respectively. Regarding nickel ions, the data were 58.7 ± 1.1 mg/l for peel powder, 50.7 ± 2.0 mg/l for fresh peel and 42.0 ± 1.2 mg/l for dry peel. While for zinc ions, the biosorption capacity was 48.4 ± 2.2 mg/l, 39.4 ± 0.8 mg/l and 32.0 ± 1.6 mg/l for powder, fresh and dry peels respectively.
However, some examined factors were found to have significant impacts upon bioremoval capacity of pomegranate peels such as pH, temperature, and contact time where best biosorption capacities were found at pH 4, with temperature 50 Cº and contact time of 1 hour.
Regarding pH, the highest bioremoval ability was found at pH 4 for all heavy metals, but with the sequence of Cr, Ni, and Zn and the data were 68.1 ± 1.5 mg/l, 56.0 ± 0.5 mg/l and 47.88 ± 1.21 mg/l respectively. Similar pattern of bioremoval capacity was detected for temperature which was 50 Cº giving capacities of 72.0 ± 0.0 mg Cr/l, 60.0 ± 1.84 mg Ni/l and 54.0 ± 1.72 mg Zn/l. In case of contact time, these capacities were again similar to those of pH and temperature and found to be 76.0 ± 3.0 mg/l , 64.0 ± 1.82 mg/l and 60.0 ± 2.0 mg/l for Cr, Ni, and Zn respectively but at 1 hour contact time.
The researchers wanted to make a new azo imidazole as a follow-up to their previous work. The ligand 4-[(2-Amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid as a derivative of trans-4-(aminomethyl) cyclohexane carboxylic acid diazonium salt, and synthesis a series of its chelate complexes with metalions, characterized these compounds using a variety technique, including elemental analysis, FTIR, LC-Mass, 1H-NMRand UV-Vis spectral process as well TGA, conductivity and magnetic quantifications. Analytical data showed that the Co (II) complex out to 1:1 metal-ligand ratio with square planner and tetrahedral geometry, respectively while 1:2 metal-ligand ratio in the Cu(II), Cr(III), Mn(II), Zn(II), Ru(III)and Rh(III)complexes
... Show MoreA new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17- tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These st
... Show MoreThis paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure
... Show MoreSchiff Base And Ligand Metal Complexes of Some Amino Acids and Drug
The present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.
A new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
SKF Dr. Abbas S. Alwan, Dhurgham I. Khudher, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2015
(4R)-2, 3-(2`-chloro-2`- carboxyl)-1, 3-dioxolano-4- (2- dimethyl –dioxolane -yl) ascorbic acid (HL), a derivative of L-ascorbic acid was prepared by the reaction of 5,6-O-isopropylidene–L-ascorbic acid with trichloroacetic acid in alkaline medium. Seven new metal ion complexes of this ligand (HL) were prepared through its direct reaction with the chlorides of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) ions respectively. The new ligand and its ion metal complexes were characterized applying elemental analyses,1H and 13C NMR, IR as well as UV-Visible spectra. Spectroscopic data showed that the ligand (C11H11O8Cl) was coordinated to the metal ions through the two oxygen atoms of the carboxyl group as abidentate ligan
... Show MoreIn this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show More