This research focuses on the removal and adsorption of Fe (III) ion using a low cost commercial polyacrylic acid hydrogel beads as adsorbent. The effects of time, initial concentration and pH on the metal ion adsorption capacity were investigated. The regeneration of the hydrogel bead and recovery of the metal ion adsorbed were study. The adsorption isotherm models were applied on experimental data and it is shown that the Langmuir model was the best one for Fe (III) ion removal. The maximum capacity was calculated. First-order and second- order kinetic models were used and it is shown that the experimental data was in reliable compliance with the first- order model with R2 value of (0.9935, 0.9011, 0.9695, 0.9912) for all concentrations which were used in this study (100, 200, 300, 400) mg.L-1 respectively.
Calculations of sputtering yield for Lithium,Sodium and Krypton bombarded by the same own ions are achieved by using TRIM program.The relation of angular dependent of sputtering yield for each ion/target is studied. Also, the dependence of the sputtering yield of target on the energy of the same ion is discussed and plotted graphically. Many researchers applied polynomials function to fit the sputtering data from experimental and simulation programs, however, we suggest to use Ior function for fitting the angular distribution of the sputtering yield. A New data for fitting coefficients of the used ion/target are presented by applying used function for the dependence of the sputtering yield on the ion energy.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
A New Mannich base [N-(4-morpholinomethyl)-1,8-naphthalimide] (L), was synthesized and characterized by C.H.N analysis, FTIR, UV-Vis and 1HNMR spectral analysis. Metal ion complexes of (L) with Pt(IV), Rh(III), Ru(III) and Pd(II) ions were prepared and characterized by FT-IR, and UV-Vis spectroscopy, elemental analysis (C.H.N), flame atomic absorption techniques as well as magnetic susceptibility and conductivity measurements. The results showed that metal ion complexes for all complexes were found in [1:2] [M:L] ratio except for Pd(II) complex which was found in [1:1] [M:L] ratio. Hyperchem-8 program has been used to predict structural geometries of the (L) and it's complexes in gas phase. The electrostatic potential (EP) of the (L) was
... Show More1-[4-(2-Hydroxy-4, 6-dimethyl-phenylazo)-phenol]-ethanone (HL1) and 2-(4-methoxy-phenylazo)-3, 5- dimethyl-phenol (HL2) were produced by combination the diazonium salts of amines with 3, 5- dimethylphenol. The geometry of azo compounds was resolved on the basis of (C.H.N) analyses, 1H and 13CNMR, FT-IR and UV-Vis spectroscopic mechanisms. Complexes of La (III) and Rh (III) have been performed and depicted. The formation of complexes has been identified by using elemental analysis, FTIR and UV-Vis spectroscopic process as well, conductivity molar quantifications. Nature of complexes produced have been studied obeyed mole ratio and continuous alteration ways, Beer's law followed through a concentration scope (1×10-4 - 3×10-4 M). High molar
... Show MoreIndole acetic acid (IAA) produced from F. oxysporum (F2) was purified by several steps included extraction by cold ethyl acetate ; Column chromatography using silica gel and TLC chromatography . The pure indole acetic acid (IAA) which produce by F. oxysporum (IAA) was tested by ultraviolet spectra at (200-300)nm ; and appear that the maximum absorbance at 229nm , the high performance liquid chromatography (HPLC) used to test the purity of the indole acetic acid and the results showed one peak at appearance time 3.822 min
Complexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show More