This research focuses on the removal and adsorption of Fe (III) ion using a low cost commercial polyacrylic acid hydrogel beads as adsorbent. The effects of time, initial concentration and pH on the metal ion adsorption capacity were investigated. The regeneration of the hydrogel bead and recovery of the metal ion adsorbed were study. The adsorption isotherm models were applied on experimental data and it is shown that the Langmuir model was the best one for Fe (III) ion removal. The maximum capacity was calculated. First-order and second- order kinetic models were used and it is shown that the experimental data was in reliable compliance with the first- order model with R2 value of (0.9935, 0.9011, 0.9695, 0.9912) for all concentrations which were used in this study (100, 200, 300, 400) mg.L-1 respectively.
The change in the optical band gap and optical activation energy have been investigated for pure Poly (vinyl alcohol)and Poly (vinyl alcohol) doped with Aluminum sulphate to proper films from their optical absorption spectra. The absorption spectra were measured in the wave range from (200-700) nm at temperature range (25-140) 0C. The optical band gap (Eg) for allowed direct transition decrease with increase the concentration of Aluminum sulphate. The optical activation energy for allowed direct transition band gap was evaluated using Urbach- edges method. It was found that ?E increases with increasing the concentration of Al2 (SO4)3 and decreases when temperature increases.
Background: Osteoarthritis OA is the most common joint disorder in the world. Injection of high molecular weight hyaluronic acid intra-articular with steroid is a one of the used therapeutic option for patients with (OA)knee.
Objectives: Objective of this study was the evaluation the efficacy, safety, pluse duration of action of viscosupplementation of the HMWHA( high molecular weight hyluranic acid ).
Type of the study: Cross-sectional study.
Methods: From 81 patients with sever knee pain due to OA (grades 3–4) were recruited from Al-Yarmouk teaching hospital & a private clinic during the period from January 2014 till July 2016.
... Show MoreThe study aims to biosynthesized of sliver nanoparticle from aqueous extract of olive leave and evaluate the effectiveness of the synthesis AgNPs against isolated fungi. The study mediating fifty samples were taken from various tools in laboratory from five hospitals in Baghdad. Four species of fungi were identified depending on the morphological and microscopic characteristics. The most common isolated fungi based on their frequency ratio were as follows Aspergillus niger 87.5%, Aspergillus flavus 62.5%, Aspergillus fumigatus 53.5% and Aspergillus nidulans 37.7%.The Biosynthesis of silver nanoparticle developed a rapid, eco-friendly and convenient green method for the stable silver nanoparticles (AgNP
... Show MoreIn the recent years the research on the activated carbon preparation from agro-waste and byproducts have been increased due to their potency for agro-waste elimination. This paper presents a literature review on the synthesis of activated carbon from agro-waste using microwave irradiation method for heating. The applicable approach is highlighted, as well as the effects of activation conditions including carbonization temperature, retention period, and impregnation ratio. The review reveals that the agricultural wastes heated using a chemical process and microwave energy can produce activated carbon with a surface area that is significantly higher than that using the conventional heating method.
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreA new class of thiadiazole /silica nanocomposites with chemical bonds between thiadiazole monomers and modified nanosilica surface were synthesized by free radical polymerization. Presence silica nanoparticles in the structure of nanocomposite showed effectively improve the physical and chemical properties of Producing polymers. A nanocomposite material with feature properties comparison with their polymers, The structure and morphology of the synthesis materials were investigated by FT-IR spectrum which display preparation new thiadiazole compounds and polymerization monomers. FT-IR showed disappeared double bond (C=C) of monomers, due to produce long chains of thiadiazole polymers and nanocomposite. X-ray diffraction gave idea ab
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
The lead-acid battery has become so dependable in its used applications of automobile starting, emergency lighting and telecommunications, which left an impression that no further investigation is necessary or desirable. While there has been slow continuous improvements in lead-acid battery performance and mainly limited to design and material engineering. This work is mainly devoted to the properties of the active mass of the positive electrode and the acid/water ratio during the manufacturing process. A field study is carried out at the State Battery Manufacturing Company located in Baghdad, to prepare batches of lead mono-oxide with predefined quantities of liquid additives (i.e. sulfuric acid and water). Quality control and laborator
... Show MoreElectrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreThis study aims to determine the reasons for the increase in the frequency of sand and dust storms in the Middle East and to identify their sources and mitigate them. A set of climatic data from 60 years (1960–2022) was analyzed. Sand storms in Iraq are a silty sand mature arkose composed of 72.7% sand, 25.1% silt, and 2.19% clay; the clay fraction in dust storms constitutes 70%, with a small amount of silt (20.6%) and sand (9.4%). Dust and sand storms (%) are composed of quartz (49.2, 67.1), feldspar (4.9, 20.9), calcite (38, 5), gypsum (4.8, 0.4), dolomite (0.8, 1.0), and heavy minerals (3.2, 6.6). Increasing temperatures in Iraq, by an average of 2 °C for sixty years, have contributed to an increase in the number of dust storm
... Show More