The main goal of this paper is to make link between the subjects of projective
geometry, vector space and linear codes. The properties of codes and some examples
are shown. Furthermore, we will give some information about the geometrical
structure of the arcs. All these arcs are give rise to an error-correcting code that
corrects the maximum possible number of errors for its length.
The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.