Amara oil field is located at south eastern Iraq in Missan governorate. The Mishrif Formation in Amara field is one of the most important reservoirs in southern Iraq. Identifying and characterizing petrophysical flow units are the key to understanding and improving reservoir description, exploitation, production and predicting the performance of carbonate reservoirs to represent them as combinations of different flow units, each with uniform pore throat size distribution and similar performance. Mishrif Formation in Amara oil field was divided into seven reservoir units (MA.MB11,MB12,MB13,MB21,MC1, and MC2) separated between them barrier beds. The present work is a reservoir flow unit identification for (MA) and (MB11) reservoir units of the Mishrif Formation in two wells ,Amara oil Field (Am-1, and Am-3) using available core data. Also Winland's approach was used to predict pore throat types that corresponds to the R35 value which is a function of entry size and pore throat sorting, and is a good measure of the largest connected pore throats in a rock with intergranular porosity. Determined R35 using Winland's model shows the reservoir rock type of MA unit is better than reservoir rock type in MB11 unit. According to R35 values, the pore throat types of Mishrif Formation in MA unit are mostly of meso, micro, macro, and mega type respectively and negligible existences of nano type, where as MB11 unit consists mostly of meso, macro and micro type respectively with few existences of nano pore type and without any mega type. Application of petrophysical flow unit types approach from routine core analysis indicates that MA unit of Mishrif Formation consists of five hydraulic flow units in wells under study where as MB11 unit has four hydraulic flow units.
The research dealt with the reservoir division for Upper Shale Member from Zubair formation in Luhais field, Where it was divided into six units of reservoir and non-reservoir, including the main reservoir unit 1C, which is the subject of research in this study, and studied in terms of thickness and lithology.
&
... Show MoreRock type identification is very important task in Reservoir characterization in order to constrict robust reservoir models. There are several approaches have been introduced to define the rock type in reservoirs and each approach should relate the geological and petrophysical properties, such that each rock type is proportional to a unique hydraulic flow unit. A hydraulic flow unit is a reservoir zone that is laterally and vertically has similar flow and bedding characteristics. According to effect of rock type in reservoir performance, many empirical and statistical approaches introduced. In this paper Cluster Analysis technique is used to identify the rock groups in tertiary reservoir for Khabaz oil field by analyses variation o
... Show MoreA 3D geological model for Mishrif Reservoir in Nasiriyah oil field had been invented "designed" "built". Twenty Five wells namely have been selected lying in Nasiriyah Governorate in order to build Structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three directions .Structural model showed that Nasiriyah oil field represents anticlinal fold its length about 30 km and the width about 10 km, its axis extends toward NW–SE with structural closure about 65 km . After making zones for Mishrif reservoir, which was divided into 5 zones i.e. (MA zone, UmB 1zone,MmB1 zone ,L.mB1 zone and mB2zone) .Layers were built for each zone depending on petrophysical propertie
... Show MoreKnowledge of permeability, which is the ability of rocks to transmit the fluid, is important for understanding the flow mechanisms in oil and gas reservoirs.
Permeability is best measured in the laboratory on cored rock taken from the reservoir. Coring is expensive and time-consuming in comparison to the electronic survey techniques most commonly used to gain information about permeability.
Yamama formation was chosen, to predict the permeability by using FZI method. Yamama Formation is the main lower cretaceous carbonate reservoir in southern of Iraq. This formation is made up mainly of limestone. Yamama formation was deposited on a gradually rising basin floor. The digenesis of Yamama sediments is very important due to its direct
Diagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by com
... Show MorePetrel is regards one of the most important software to delineate subsurface Petrophysical properties to the reservoir. In this study, 3D Integrated geological models has been built by using Petrel software. The process includes integrated Petrophysical properties and environmental approaches.
Noor oil field within Mishrif Formation in terms of structural geology represents asymmetrical anticlinal fold with direction NW-SE. Porosity and water saturation model have been built. The reservoir was divided into several reservoirs and Nonreservoir units depends on the Petrophysical properties for each zone. In addition,
intact model for the reservoir in terms of porosity and water saturation have been b
The identification of a bed’s lithology is fundamental to all reservoir characterization because the physical and chemical properties of the rock that holds hydrocarbons and/or water affect the response of every tool used to measure formation properties. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umr Formation in Luhais well -12 southern Iraq. The available well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The petrophysical parameters such as porosity, water saturation, hydrocarbon saturation, bulk water volume, etc. were computed and interpreted using Techlog software. The lithology prediction of Nahr
... Show MoreAs the reservoir conditions are in continuous changing during its life, well production rateand its performance will change and it needs to re-model according to the current situationsand to keep the production rate as high as possible.Well productivity is affected by changing in reservoir pressure, water cut, tubing size andwellhead pressure. For electrical submersible pump (ESP), it will also affected by numberof stages and operating frequency.In general, the production rate increases when reservoir pressure increases and/or water cutdecreases. Also the flow rate increase when tubing size increases and/or wellhead pressuredecreases. For ESP well, production rate increases when number of stages is increasedand/or pump frequency is
... Show MoreThe current work is focused on the rock typing and flow unit classification for reservoir characterization in carbonate reservoir, a Yamama Reservoir in south of Iraq (Ratawi Field) has been selected, and the study is depending on the logs and cores data from five wells which penetrate Yamama formation. Yamama Reservoir was divided into twenty flow units and rock types, depending on the Microfacies and Electrofacies Character, the well logs pattern, Porosity–Water saturation relationship, flow zone indicator (FZI) method, capillary pressure analysis, and Porosity–Permeability relationship (R35) and cluster analysis method. Four rock types and groups have been identified in the Yamama formation de
The aim of this study is to determine and evaluate the units and subunits of Mishrif Formation in Garraf oil field 85 km north of Nasiriyah city depending mainly on the geophysical well logging data and other amiable geological information. The sets of the geophysical well logs data acquired from GA-4, GA- AIP, GA- B8P, GA-3 and GA-5 wells of Garraf oil field are used to determine the petrophysical and lithological properties for each zone in Mishrif Formation to locate, define and evaluate hydrocarbon production from each zone in the reservoir which is also known as formation evaluation. The digitization was done by using Didger software and the interpretations were made using Interactive Petrophysics Program v 3.5 and Petrel software.
... Show More