Amara oil field is located at south eastern Iraq in Missan governorate. The Mishrif Formation in Amara field is one of the most important reservoirs in southern Iraq. Identifying and characterizing petrophysical flow units are the key to understanding and improving reservoir description, exploitation, production and predicting the performance of carbonate reservoirs to represent them as combinations of different flow units, each with uniform pore throat size distribution and similar performance. Mishrif Formation in Amara oil field was divided into seven reservoir units (MA.MB11,MB12,MB13,MB21,MC1, and MC2) separated between them barrier beds. The present work is a reservoir flow unit identification for (MA) and (MB11) reservoir units of the Mishrif Formation in two wells ,Amara oil Field (Am-1, and Am-3) using available core data. Also Winland's approach was used to predict pore throat types that corresponds to the R35 value which is a function of entry size and pore throat sorting, and is a good measure of the largest connected pore throats in a rock with intergranular porosity. Determined R35 using Winland's model shows the reservoir rock type of MA unit is better than reservoir rock type in MB11 unit. According to R35 values, the pore throat types of Mishrif Formation in MA unit are mostly of meso, micro, macro, and mega type respectively and negligible existences of nano type, where as MB11 unit consists mostly of meso, macro and micro type respectively with few existences of nano pore type and without any mega type. Application of petrophysical flow unit types approach from routine core analysis indicates that MA unit of Mishrif Formation consists of five hydraulic flow units in wells under study where as MB11 unit has four hydraulic flow units.
The Yamama Formation represents a part of the Late Berriasian-Aptian sequence, deposited during the Early Cretaceous period within the main shallow marine depositional environment. The studied area covers three oil fields; Sindbad oil field, Halfaya and Ad'daimah oil field, located in southeastern Iraq. Six major microfacies were recognized in the succession of the studied area represented by the Yamama Formation to determine and recognize depositional paleoenvironments. These microfacies are; Peloidal Packstone, Algal Wackestone to Packstone, Bioclastic Wackestone – Packstone, Foraminiferal Bioclastic Wackstone, Packstone, Peloidal – Oolitic Grainstone and Mudstone Microfacies. These microfacies are classified int
... Show MoreFive subsurface sections and a large number of thin sections of the Hartha Formation (age Late Campanian – Early Maastrichtian) were studied to unravel the depositional facies and environments. The Hartha Formation is important as an oil reservoir in Iraq.
Petrographic and microfacies analysis of selected wells from Balad and East Baghdad oil fields in Central Iraq, enable the recognition of three main Sedimentary paleoenvironments. These are restricted marine, the shallow open marine environment within the inner ramp, deep outer ramp.
The studied Formation represents by two asymmetrical cycles bounded below by sequence boundary (SB1) the contact between Hartha and Saadi Formations. The deep outer ramp facies of
... Show MoreNasiriyah oilfield is located in the southern part of Iraq. It represents one of the promising oilfields. Mishrif Formation is considered as the main oil-bearing carbonate reservoir in Nasiriyah oilfield, containing heavy oil (API 25o(. The study aimed to calculate and model the petrophysical properties and build a three dimensional geological model for Mishrif Formation, thus estimating the oil reserve accurately and detecting the optimum locations for hydrocarbon production.
Fourteen vertical oil wells were adopted for constructing the structural and petrophysical models. The available well logs data, including density, neutron, sonic, gamma ray, self-potential, caliper and resistivity logs were used to calculate the
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off perm
... Show MoreHydrocarbon production might cause changes in dynamic reservoir properties. Thus the consideration of the mechanical stability of a formation under different conditions of drilling or production is a very important issue, and basic mechanical properties of the formation should be determined.
There is considerable evidence, gathered from laboratory measurements in the field of Rock Mechanics, showing a good correlation between intrinsic rock strength and the dynamic elastic constant determined from sonic-velocity and density measurements.
The values of the mechanical properties determined from log data, such as the dynamic elastic constants derived from the measurement of the elastic wave velocities in the material, should be more a
It is evident from this study that Yamama Formation is reservoir rocks and source rocks at the same time, based on occurrences of crude oil and source rocks. Bulk properties of Yamama oil in six wells as well as comparing several samples of Yamama oil by using the biological mark have indicated multi source of hydrocarbons with some pay having Jurassic and Lower Cretaceouse source affinity that belongs to the Yamama Formation.
A 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show More