Amara oil field is located at south eastern Iraq in Missan governorate. The Mishrif Formation in Amara field is one of the most important reservoirs in southern Iraq. Identifying and characterizing petrophysical flow units are the key to understanding and improving reservoir description, exploitation, production and predicting the performance of carbonate reservoirs to represent them as combinations of different flow units, each with uniform pore throat size distribution and similar performance. Mishrif Formation in Amara oil field was divided into seven reservoir units (MA.MB11,MB12,MB13,MB21,MC1, and MC2) separated between them barrier beds. The present work is a reservoir flow unit identification for (MA) and (MB11) reservoir units of the Mishrif Formation in two wells ,Amara oil Field (Am-1, and Am-3) using available core data. Also Winland's approach was used to predict pore throat types that corresponds to the R35 value which is a function of entry size and pore throat sorting, and is a good measure of the largest connected pore throats in a rock with intergranular porosity. Determined R35 using Winland's model shows the reservoir rock type of MA unit is better than reservoir rock type in MB11 unit. According to R35 values, the pore throat types of Mishrif Formation in MA unit are mostly of meso, micro, macro, and mega type respectively and negligible existences of nano type, where as MB11 unit consists mostly of meso, macro and micro type respectively with few existences of nano pore type and without any mega type. Application of petrophysical flow unit types approach from routine core analysis indicates that MA unit of Mishrif Formation consists of five hydraulic flow units in wells under study where as MB11 unit has four hydraulic flow units.
The extraction of Cupressus sempervirens L. or cypress essential oil was studied in this paper. This cypress oil was extracted by using the hydro-distillation method, using a clevenger apparatus. Cupressus sempervirens L. leaves were collected from Hit city in Al-Anbar province – Iraq. The influences of three important parameters on the process of oil extraction; water which used as a solvent to the solid ratio (5:1 and 14:1 (ml solvent/g plant), temperature (30 to 100 °C) and processing time, were examined to obtain the best processing conditions to achieve the maximum yield of the essential oil. Also, the mathematical model was described to calculate the mass transfer coefficient. Therefore, the best conditions, that were obtained in
... Show MoreIn this paper, ZnO NPs were prepared using D.C high-voltage and high frequency with an output of 6 kHz at two different preparation times preparation (10,12) minutes. Transmission electron microscopy (TEM) with (FE-SEM) was used to examine the homogenous, compact, and dense surface of the zinc oxide nanoparticles created with apparent grain size determined by (XRD), XRD results explain that the increase of the preparation time from 10 minutes to 12-minute caused an increase in crystallite size. In addition, FE-SEM showed that the increase in the ZnO NPs cluster distribution with particle size increases with increasing the preparation time. AFM was also utilized to determine the degree of cooperation between the surfaces of the z
... Show MoreSynthetic routes to a series of tin compounds incorporating nitrogen-based
chelating ligands are described. The β-diketiminato tin chloride precursor was
utilized to isolate the first tin-phosphorus tin compound using this ligand,
[(HC{C(Me)NAr}2)SnPPh2]. A diamide ligand was employed to investigate tin (II)
and (IV) compounds. Two tin (II) and (IV) compounds, [(Me2Si{ArN}2)SnPh2] and
[Li(OEt)2](Me2Si{ArN}2)SnPh2], were formed via reaction of the lithiated
preligand, [Me2Si{ArNLi}2]+Sn(IV). Finally a novel Sn(II) N-heterocyclic
stannylene compound was formed by reaction of the preligand with SnCl4.
The diamide ligand was found to be suitable for both Sn(IV) and Sn(II)
compounds. Reaction to obtain the tin dich
Thin films of the blended solution of NiPc/C60 are fabricated using spin-coating method for three different ratios (100/1, 100/10 and 100/100) according to the weight. The films are deposited on to glass substrates and treated with several annealing temperatures (373, 423 and 473)K. The structure and surface morphology of the as-deposited and annealed films using x-ray diffraction and AFM was studied and exhibited a change and enhanced crystallization and surface morphology caused by changes in heat treatment temperatures. Investigation of X-ray diffraction patterns of NiPc/C60 indicated that it have polymorphism structure, i.e. mix between amorphous and polycrystalline structure. when heat treatment temperatures ch
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreAttention has recently been given to finding alternative and sustainable raw material sources for wood and metal adhesives, such as polyvinyl alcohol (PVA), corn starch (CS), arabic gum (AG), and dextrins (D). Modifying polymer dispersion using unique substances, such as modifying reactive elastomer liquid (EL) using PVA, CS, AG, or D results in sufficiently moisture-resistant adhesive joins. In the present study, the physical characteristics of EL/blended with the natural polymers PVA, CS, AG, and D, based on high-density fiberboard (HDF) wood and aluminum (Al) adhesives and coatings, were investigated and compared to those of pure EL. The EL was blended with PVA, CS, AG, or D at a ratio of 60/40 (w/w) to form EL/blends. The che
... Show More