Pulsar stars divided into two types depending on the periods of rotation, normal
emission Pulsar and Millisecond pulsars (MSPs). In this paper, the effect of the
strong magnetic field on the thermal emission in Millisecond pulsar stars is
concentrated. Also the luminosity spin down (Lsp) are calculated depends on the
periods (P), and Period derivative (
P
) for sample stars which were adopted. The
relation between internal and surface magnetic field is illustrated. The model that
which adopted is Hallo Cone Model (HCM)). The total magnetic dipole radiation
power (heating power Wh) of all super fluid neutrons in MSPs stars is calculated.
For sample stars of MSPs , the value of transition period (Ptr) was determined by
depending on the some properties of pulsar star. The results indicated that heating
power of our model (A) would be larger than the model (B) that's due to the huge
value of the moment of inertia (I). Also the results showed that the maximum
surface luminosity of stars occurs at the values of Magnetic field ≥ 5.5 1012 Gauss.
The thermal distribution in the diseased tissue treated by different methods faces the problem of an uncontrollable defused heat. In the present article, we use a plasmonic bowtie nanoantenna working in the near infrared region to enhance the temperature confinement in the tissue. The Computer Simulation Technology Studio Suite package version 2019 was used to execute the design of both plasmonic nanoantenna and the tissue. Gold nanostructure and silicon carbide dioxide are the components the plasmonic nanoantenna in the bowtie shape. The results showed that the distance between the tumor tissue and the antenna is important to determine the intensity field where the maximum field is 5.9*107 V/m at a distance of 100 nm. The maximum
... Show MoreThe linear instability and nonlinear stability analyses are performed for the model of bidispersive local thermal non-equilibrium flow. The effect of local thermal non-equilibrium on the onset of convection in a bidispersive porous medium of Darcy type is investigated. The temperatures in the macropores and micropores are allowed to be different. The effects of various interaction parameters on the stability of the system are discussed. In particular, the effects of the porosity modified conductivity ratio parameters, and , with the int
... Show MoreAn in-depth experimental study of the matrix effect of antifreeze (ethylene glycol) and water contamination of engine oil through FT-IR spectroscopy. With a comparison of the percent by volume concentration of contaminated fresh 15W-40 engine oil, there appeared to be a noticeable reduction in the O–H stretching signal in the infrared spectrum when ethylene glycol based antifreeze was included as a contaminant. The contaminants of distilled water, a 50/50 mixture of water and commercial ethylene glycol antifreeze, and straight ethylene glycol antifreeze were compared and a signal reduction in the O–H stretch was clearly evident when glycol was present. Doubling the volume of the 50/50 mixture as compared to water alone still res
... Show MoreThe thermal stability of previously prepared tetraphenanthroporphyrazine (TPPH2) and its complexes with VO(IV) , Co(II) , Cu(II) , Zn(II) , Mg(II) , Ca (II) ions were studied by thermogravimetric analysis (TG & DTG) at temperature range (20-1000oC). The results indicated that these compounds have a high thermal stability comparable to those of phthalocyanine compounds (PC) and higher than those of hemiporphyrazine compounds (HP) . In general metal complexes were more stable than parent ligand . Data of magnetic susceptibility and electrical conductivity were also obtained as further support for the studied compoundes .
Nowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreIndium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreAntimony (Sb) films are fabricated by depositing (Sb) on glass substrates at room
temperature by the method of vacuum evaporation with thickness (0.25 and 0.51m),
with rate of deposition equal to (2.77Å/sec), the two samples are annealed in a
vacuum for one hour at 473K. The optical constants which are represented by the
refractive index (n), extinction coefficient (k) were determined from transmittance
spectram in the near Infrared(2500-3500 )nm regions. The tests have been shown
that the optical energy gap increases with increasing of annealing temperature for
the two samples.
Thermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c
... Show More