The nature of interstellar matter has been explained by presenting a model consists of organic and inorganic materials mixture in the wavelength range (9-12) μm.
Laboratory samples of different concentrations of these materials were prepared and examined by using FTIR spectrometer device. Results of spectra for these samples are compared with observation of Trapezium nebula in the same wavelengths range. The best mixture model found to fit with observation is a sample consists of:11.96 % (Diatom silica (98% pure silica)) + 14.35 % (Carbon (C)) +27.63 % (Tryptophan amino acid) + 46.06 % (Tyrosine amino acid), this are done using convolution technique. Interstellar matter could be explained biologically, as the contribution of organic material is almost 88
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show More