A simple, rapid and sensitive method for the analysis of Atenolol in pure and pharmaceutical preparation as an alternative analytical procedure were developed by continuous flow injection analysis via turbidimetric (T180o) and scattered light effect at two opposite position (2N90o). The method is based upon the formation of white precipitate for the ion pair compound by phosphomolybidic acid with Atenolol in aqueous medium. The precipitate is measured via the attenuation of incident light and scattering of the incident light in two opposite direction namely +90o and -90o angle were measured. Chemical and physical parameters were investigated. The linearity of Atenolol is ranged from (0.1-11) mmol.L-1, with correlation coefficient r=0.9938, lower limit of detection (LOD) 0.05 mmol.L-1(3SB)(S/N=3) for n=13 and the relative standard deviation for 7 mmol.L-1 Atenolol solution is lower than 3% (n=7). The method was applied successfully for the determination of atenolol in three pharmaceutical drugs. A comparisons were made between the newly developed method of analysis with the classical method ( uv-spectrophotometry at wave length 274nm) of analysis using the standard addition method via the use of t- test. It shows that there was no significant difference at α=0.05(95% confidence) between the two methods. Therefore the newly developed method can be accepted as an alternative method for the analysis of Atenolol, in addition to comparison between the official value and the calculated value for both methods
New microphotometer was constructed in our Laboratory Which deals with the determination of Molybdenum (VI) through its Catalysis effect on Hydrogen peroxide and potasum iodide Reaction in acid medium H2SO4 0.01 mM. Linearity of 97.3% for the range 5- 100 ppm. The repeatability of result was better than 0.8 % 0.5 ppm was obtanined as L.U. (The method applied for the determination of Molybdenum (VI) in medicinal Sample (centrum). The determination was compared well with the developed method the conventional method.
A new attempt is made to determine diosmin (DIO) in its pure form and in dietary supplements by using spectrophotometric flow injection analysis (FIA) assay method conjugated with batch method. The analysis was achieved depending on the oxidative coupling reaction with N, N-dimethyl-p-phenylenediamine (DMPD) to form a green dye which is measured at wavelength of 677 nm. The tested methods were found to be economical, delicate, precise and sturdy. The validation variables of the batch and FIA methods gave linearity in the determination range of DIO (1-35) μg/mL and (5-120) μg/mL demonstrated calibration graphs with linearity coefficient values of r2 =0.9989 and r2 =0.9991, respectively. Limits of quanti
... Show MoreAtenolol was used with povidone iodine to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and povidone iodine in an aqueous medium. Optimum parameters was studied to increase the sensitivity development of method. Calibration graph was linear in the range of 2-19 mmol/L for cell A and 5-19 mmol/L for cell B. Limit of detection 146.4848 ng/55 µL and 2.6600 µg/200 µL respectively to cell A and cell B. Correlation coefficient (r) 0.9957 for cell A and 0.9974 for cell. Relative standard deviation (RSD %) was lower than 1%, (n=8) for the determination of
... Show MoreThis piece of research work aims to study one of the most difficult reaction and determination due to continuous and rapid variation of reaction products and the reactants. As molybdenum (VI) aid in the decomposition of hydrogen peroxide in alkaline medium of ammomia, thus means a continuous liberation of oxygen which cuases and in a continuous manner a distraction in the measurement process. On this basis pyrogallol was used to absorbe all liberated oxygen and the result is an a clean undisturbed signals. Molybdenum (VI) was determined in the range of 4-100 ?g.ml-1 with percentage linearity of 99.8% or (4-300 ?g.ml-1 with 94.4%) while L.O.D. was 3.5 ?g.ml-1. Interferring ions (cations and anions) were studied and their main effect was red
... Show MoreA simple, new, and sensitive spectrophotometric technique for the determination of methyldopa was presented in this research article. The suggested technique includes reacting metoclopramide with NaNO2 in the presence of hydrochloric acid to produce diazonium salt, and then the drug methyldopa reacts with the diazonium salt to produce a yellow azo dye. The maximum wavelength of the dye was 458 nm. This method is effectively used for the determination of methyldopa in different pharmaceutical formulations. It has been found that there are no significant interactions between common excipients and pure methyldopa. The results were processed statistically, and compared with those obtained from officially approved methods, they were found to be
... Show MoreIn this study, the development of an indirect spectrophotometric method for the determination of folic acid in pure and pharmaceutical preparations is described. The method is based on the oxidation of pyrocatechol with iron (III) in an acidic medium, followed by the reaction with folic acid (FA) to produce a stable, water-soluble orange compound with maximum absorption at 350 nm versus the blank reagent. The complex of charge transfer was studied under optimal conditions; the titration graph was linear over the range of 0.5-25 μg/mL with a relative error of 1.2-2.8 and a relative standard deviation of 2.43-1.45 depending on the concentration level.
A simple, accurate and sensitive spectrophotometric way is used to determine Bisacodyl in pure and pharmaceutical preparations. The proposed method depends on using 2,4-Dinitrophenylhydrazine as chromogenic reagent . The method was based on the oxidative coupling reaction of Bisacodyl with 2,4-Dinitrophenylhydrazine with Sodium periodate in the presence of sodium hydroxide as alkaline media to form red water soluble dye product , that has a maximum absorption at ?max 522nm . Beer ,s law is obeyed in the concentration of (2.00–20.00) ?g.ml -1 .The molar absorptivity is (6505) L.mol-1.cm-1,a sandall sensitivity of(0.0555) ?g.cm-2), correlation coefficient of (0.9970) , Limitof detection (LOD) (0.0312 ?g.ml-1), limit of Quantitation (LOQ) (
... Show MoreNew, simple and sensitive batch and reverse FIA spectrophotometric methods for the determination of doxycycline hyclate in pure form and in pharmaceutical preparations were proposed. These methods based on oxidative coupling reaction between doxycycline hyclate and 3-methylbenzothiazolinone-2-hydrazone hydrochloride (MBTH) in the presence ammonium ceric sulfate in acidic medium, to form green water-soluble dye that is stable and has a maximum absorbance at 626 nm. A calibration graph shows that a Beer's law is obeyed over the concentration range of 1-80 and 0.5-110 ?g.mL-1 of DCH for the batch and rFIA respectively with detection limit of 0.325 ?g.mL-1 of DCH for r-FIA methods. All different chemicals and physical experimental paramete
... Show MoreA simple, economical and selective method employing ion pair dispersive liquid−liquid microextraction (DLLME) coupled with spectrophotometric determination of carbamazepine (CBZ) in pharmaceutical preparations and biological samples was developed. The method is based on reduction of Mo(VI) to Mo(V) using a combination of ammonium thiocyanate and ascorbic acid in acidic medium to form a red binary Mo(V) thiocyanate complex. After addition of CBZ to the complex, extraction of the formed CBZ−Mo(V)−(SCN)6 was performed using a mixture of methylene chloride and methanol. Then, the measurement of target complex was performed at the wavelength of 470 nm. The important extraction parameters affecting the efficiency of DLLME were studied and o
... Show More