This research involves the study of permeability declination as a result of kaolinite due to the changing in pH in the Zubair reservoir (Lower Cretaceous) during the secondary production by water injection method. Four wells and six core samples within the North Rumaila field are studied, Minerals have been diagnosed by XRD and this specific site of clay minerals was diagnosed within the core samples by scanning electron microscopy (SEM). The core samples are also studied petrogrphically using the polarizing microscope and found that they mainly consist of quartz, while the predominant clay is kaolinite. The effect of pH on the values of permeability was examined through a series of laboratory experiments, as it has been tested in the cases of gradual sudden increase form acidic to alkaline. Petrophysical properties (porosity and initial permeability) were measured a prior to testing. After performing these tests, the final permeability was also measured as well as the rate of formation damage. The final permeability decreased gradually at a rate of 20-30% M Darcy during the injection out with solution of pH 3 to 11 with getting formation damage up to 25%. While in the case injection with sudden increase pH from acid to alkaline directly, there has been a rapid and substantial reduction in the final permeability as average of 28% -72%, with a formation damaged rate of 44%. The results confirmed that the reason of the decrease in the permeability is due to the kaolinite mineral which is subject to the dispersion phenomenon during the change in pH, and the acidic environment is suitable for the reservoir, and does not lead to a reduction in permeability.
In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show MoreThe disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreThe aim of this research is to prove the idea of maximum mX-N-open set, m-N-extremally disconnected with respect to t and provide some definitions by utilizing the idea of mX-N-open sets. Some properties of these sets are studied.
In the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM), blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depe
... Show MoreDyes are extensively water-soluble and toxic chemicals. The disposing of wastewater rich with such chemicals has severely impacted surface water quality (rivers and lakes). In the current study, an anionic dye, methyl orange, were extracted from wastewater fluids using bulk liquid membranes supplemented with an anionic carrier (Aliquat 336 (QCI)). Parameters including solvent type (carbon tetrachloride and chloroform), membrane stirring speed (100-250 rpm), mixing speed of both phases (50-100 rpm), The feed pH (2-12) and implemented temperature (35-60 °C) were thoroughly analyzed to determine the effect of such variables on extraction effectiveness. Furthermore, the effect of methyl orange (10-50 ppm) in the feed stage and NaOH (0
... Show MoreThe aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increas
... Show More