An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to be (En=M), this initial value gave a good result for (E) for these methods regardless the value of e to increasing the accuracy of E. After that the orbital elements converting into state vectors within one orbital period within time 50 second, the results demonstrated that all these four methods can be used in semi-circular orbit, but in case of elliptical orbit Danby’s and Halley’s method use only for e ≤ 0.7, Mikkola’s method for e ≤ 0.01 while Newton-Raphson uses for e < 1, which considers more applicable than others to use in semi-circular and elliptical orbit. The results gave a good agreement as compared with the state vectors of Cartosat-2B satellite that available on Two Line Element (TLE).
Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
A roundabout is a highway engineering concept meant to calm traffic, increase safety, reduce stop-and-go travel, reduce accidents and congestion, and decrease traffic delays. It is circular and facilitates one-way traffic flow around a central point. The first part of this study evaluated the principles and methods used to compare the capacity methods of roundabouts with different traffic conditions and geometric configurations. These methods include gap acceptance, empirical, and simulation software methods. Previous studies mentioned in this research used various methods and other new models developed by several researchers. However, this paper's main aim is to compare different roundabout capacity models for acceptabl
... Show MoreIn this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
In this paper, the satellite in low Earth orbit (LEO) with atmospheric drag perturbation have been studied, where Newton Raphson method to solve Kepler equation for elliptical orbit (i=63 , e = 0.1and 0.5, Ω =30 , ω =100 ) using a new modified model. Equation of motion solved using 4th order Rang Kutta method to determine the position and velocity component which were used to calculate new orbital elements after time step ) for heights (100, 200, 500 km) with (A/m) =0.00566 m2/kg. The results showed that all orbital elements are varies with time, where (a, e, ω, Ω) are increased while (i and M) are decreased its values during 100 rotations.The satellite will fall to earth faster at the lower height and width using big values for ecce
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i