In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.
In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
A dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th
... Show MoreIn this paper, two different chaotic dynamic systems are coupled using a semiconductor laser to produce a new chaotic system. These two chaotic systems are Rossler and Chua systems. X-dynamic of Rossler system was coupled optically using optical fiber as a carrier of signal with x, y, and z-dynamics of Chua system. The results were analyzed and the behavior of Chua system was found to be changing in time series which, in turn, changed the attractor. The Chua attractor was converted from double scroll to single scroll. The results obtained from connecting two different systems in chaotic behavior showed a remarkable increase in the bandwidth of Chua system. This increase in bandwidth opens up a wide field for many
... Show MoreThe nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.
This study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the
... Show MoreIn this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth
... Show MoreThis research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show MoreIn this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.
An experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle) with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the result
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them