Medical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.
Face recognition system is the most widely used application in the field of security and especially in border control. This system may be exposed to direct or indirect attacks through the use of face morphing attacks (FMAs). Face morphing attacks is the process of producing a passport photo resulting from a mixture of two images, one of which is for an ordinary person and the other is a judicially required. In this case, a face recognition system may allow travel of persons not permitted to travel through face morphing image in a Machine-Readable Electronic Travel Document (eMRTD) or electronic passport at Automatic Border Control (ABC) gates. In creating an electronic passport, most countries rely on applicant to submit ima
... Show MoreA novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreThe extrasolar planets in the vicinity of stars are expected to be bright enough
and are very difficult to be observed by direct detection. The problem is attributed to
the side loops of the star that created due to the telescope diffraction processing.
Several methods have been suggested in the literatures are being capable to detect
exoplanet at a separation angle of 4λ/D and at a contrast ratio of 10-10. These
methods are more than one parameter function and imposing limitations on the inner
working distance. New simple method based on a circular aperture combined with a
third power Gaussian function is suggested. The parameters of this function are then
optimized based on obtaining a minimum inner working dis
Face detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.
A simple and smart algorithm was presented to recognize car plates in parking at the College of Science for Women, University of Baghdad, Iraq. The study consists of recording video clips of all cars parked in the selected area. The studied camera heights were1m and 2m, and the video clips were 19 and 30. Images were extracted from the video clip to be used for training data for the cascade method. Haar classification was used to detect license plates after the training step. Viola-jones algorithm was applied to the output of Haar’s data for both camera heights (1m and 2m). The accuracy was calculated for all data with different weather conditions and local time recoding. The accuracy is 100% for all data in this study.
<
... Show MoreThe development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities t
... Show MoreEthnographic research is perhaps the most common applicable type of qualitative research method in psychology and medicine. In ethnography studies, the researcher immerses himself in the environment of participants to understand the cultures, challenges, motivations, and topics that arise between them by investigating the environment directly. This type of research method can last for a few days to a few years because it involves in-depth monitoring and data collection based on these foundations. For this reason, the findings of the current study stimuli the researchers in psychology and medicine to conduct studies by applying ethnographic research method to investigate the common cultural patterns language, thinking, beliefs, and behavior
... Show MoreObjective: The aims of research to identify sample of websites of Arabian medical periodicals and exam applying to
standards for publishing on the internet.
Methodology: A survey method is applied about nine medical periodicals websites and data are collected through
forms include five international standards to assessing websites.
Results: of data collected, the following findings are obtained:
1. Through examining website addresses, unsuitability was found in using Universal Resources Locater, because six of
periodicals use com. in URL. While, all of them not relevance commercial but scientific aim.
2. To measure Credibility Standard by adopting numbers values, the results found, four of periodicals obtained (level
Semantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show MoreCadastral map environment is directed, more than ever before, towards Artificial Intelligence use to produce fast and accurate maps and keep up with the huge population growth. The traditional approach currently in production of maps is expensive and effort-intensive in addition to be considered as highly time-consuming process. UAV-based cadastral mapping imagery that use automatic techniques are newly being exploited to accelerate the process of production or updating. The state-of-the-art intelligent algorithms are capable to extract land boundaries from images better than conventional techniques. This paper presents an automatic workflow of cadastral map production based on land boundary and automatic f
... Show More