In this paper, three main generators are discussed: Linear generator, Geffe generator and Bruer generator. The Geffe and Bruer generators are improved and then calculate the Autocorrelation postulate of randomness test for each generator and compare the obtained result. These properties can be measured deterministically and then compared to statistical expectations using a chi-square test.
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
Many of the key stream generators which are used in practice are LFSR-based in the sense that they produce the key stream according to a rule y = C(L(x)), where L(x) denotes an internal linear bit stream, produced by small number of parallel linear feedback shift registers (LFSRs), and C denotes some nonlinear compression function. In this paper we combine between the output sequences from the linear feedback shift registers with the sequences out from non linear key generator to get the final very strong key sequence
This paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.
In the present work, a Z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of the Ag nanoparticles. In this technique, a pulsed second harmonic Nd :YAG laser at wavelength 532 nm was used. The results show that the nonlinear refractive index and nonlinear absorption coefficients of the Ag nanoparticles are found to be dependent on the size these nanoparticles.
Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems. Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.
Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h
... Show MoreThe orbital motion and longitude for some Jupiter's satellites (Amaletha, Europa, Ganymede and Callisto) were calculated from two different locations Iraq and Syria. A program was designed, the input parameters were the desired year, month, day and the longitude of the location, the output parameters results were applied in form of a file, and this file includes the longitude, orbital motion, and local time of these satellites. A specific date 1-10-2013 was taken, the results of longitude was (20-336) º and orbital motion was (92-331) º for both Iraq and Syria location with observing time (05:24:14-15:18:10) for Iraq and (04:56:33-14:50:30) for Syria. The difference in time between the two locations was constant (00:45:00), these results
... Show More