Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show the success of this system where the accuracy of the system is more than 95% on social media data.
This research aimed to know the tectonic activity of the Wadi Al-Batin alluvial fan using hydrological and morphotectonic analyses. Wadi Al-Batin alluvial fan is deposited from Wadi Al-Rimah in Saudi Arabia, which extended to Iraqi and Kuwait international boundaries. The longitudinal and transverse faults that characterize this region were common. The Abu- Jir-Euphrates faults have a significant impact on the region. The faults zone consists of several NW- SE trending faults running from the Rutba in western Iraq to the south along the Euphrates through Kuwait and meeting the Al-Batin fault to the Jal Al-Zor fault. The Hydromorphometric analysis of the present fan shows five watersheds having asymmetry shapes, more elongated and activi
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show MoreThe problem of this research lies in the fact that there is a lack of accurate scientific perceptions about the size of the use of Iraqi women’s social networking sites and the motives behind this use and the expectations generated by them.
The goals of the research are as follows:
1- Determine the extent of Iraqi women’s use of social networking sites (Facebook, YouTube, twitter, and Instagram).
2- Investigative the motives behind the use of social networking sites by Iraqi women.
3- Detecting the repercussions of Iraqi women’s use of social networking sites (Facebook, you tube, twitter, and Instagram).
The research is classified as a descriptive one. The researchers use the survey methodology. The research commu
Social networking sites have become very popular since the beginning of the current decade and have become linked to our daily life. We follow the news, Analyses and opinions on the one issue in a way that attracts millions of users and the number grows every secon On Twitter, one of the most important social networking sites, all social groups rushed from the president to the last citizen to open accounts when they found themselves forced to do so . During the recent Gulf crisis, Twitter was buzzing with Twitter, which achieved the largest circulation globally. Instead of serving the issue and directing it to serve the Arab interest, most of the publications were on th |
Hyperglycemia is a complication of diabetes (high blood sugar). This condition causes biochemical alterations in the cells of the body, which may lead to structural and functional problems throughout the body, including the eye. Diabetes retinopathy (DR) is a type of retinal degeneration induced by long-term diabetes that may lead to blindness. propose our deep learning method for the early detection of retinopathy using an efficient net B1 model and using the APTOS 2019 dataset. we used the Gaussian filter as one of the most significant image-processing algorithms. It recognizes edges in the dataset and reduces superfluous noise. We will enlarge the retina picture to 224×224 (the Efficient Net B1 standard) and utilize data aug
... Show More