In this research, we studied the structural properties of SnO2 films nanostructure which prepared by chemical spray pyrolysis method at room temperature on the rules of glass heated (400oC) with rate of spraying (2.5 ml/ min). The effect of annealing temperaturs (450,500,550,600 and 650oC) for two hours on those properties has been indicated. The results of x-ray diffraction showed that all of the prepared films were polycrystalline with tetragonal type and orientation was (110) for all models before and after annealing, and the annealing led to an increase in the grain size. The full width at half maximum (FWHM) values of the (110) peaks of the films decreased from 1.492o to 1.064o with increasing annealing temperature .The surface morphology of the (SnO2) nanostructure films have been studied using atomic force microscopy (AFM) which indicated that the grown films showed good crystalline and homogeneous surface . The Root Mean Square (RMS) values and surface roughness of the films decreased with increasing the annealing temperature. The optical properties of the films were studied by (UV-VIS-NIR) spectrophotometer in the wavelength range (300-1100 nm). The optical transmission results showed high transmittance (87%) at annealing a temperature (650oC). The energy gap for direct transmission was calculated before and after annealing. From the gas sensing measurements of SnO2 films for (CO2 , NH3), showed a good sensitivity at 50oC. It was found the that best sensitivity of SnO2 films at annealing temperature 650oC were (100%) for NH3 (98.78%).
Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreАннотация
Взгляд на пол как на комплексное социальное отношение означает,что роль женщины в истории следует рассматривать не просто как новый для исторической науки предмет исследования, а как обойденный вниманием ученых вопрос об отношениях между людьми или группами людей.
Женщина играет особую и важную роль в обществе , даже скажут ,что она половина нашего общества ,поэтому она яв
... Show MoreA low-cost, RGB LED-based visible-light spectrophotometer was designed to measure dyes concentration. Dyes are widely used as indicators or coloring agents in different applications and knowing their concentration is an essential part for many studies. The proposed spectrophotometer provides many functionalities that clones the traditional expensive spectrophotometers for a budged price under $50. It was aimed to provide a versatile tool for instructors and educators to teach their students the fundamental concepts behind spectrophotometry. Malachite green, methyl red, and methyl orange dyes were chosen to be good samples to show the integrity of the proposed spectrophotometer in terms of accuracy, repeatability, and sensitivity as
... Show MoreIn this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreEnergy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit
... Show MoreIn this study, an approach inspired by a standardized calibration method was used to test a laser distance meter (LDM). A laser distance sensor (LDS) was tested with respect to an LDM and then a statistical indicator explained that the former functions in a similar manner as the latter. Also, regression terms were used to estimate the additive error and scale the correction of the sensors. The specified distance was divided into several parts with percent of longest one and observed using two sensors, left and right. These sensors were evaluated by using the regression between the measured and the reference values. The results were computed using MINITAB 17 package software and excel office package. The accuracy of the results in this wo
... Show MoreThe limitations of wireless sensor nodes are power, computational capabilities, and memory. This paper suggests a method to reduce the power consumption by a sensor node. This work is based on the analogy of the routing problem to distribute an electrical field in a physical media with a given density of charges. From this analogy a set of partial differential equations (Poisson's equation) is obtained. A finite difference method is utilized to solve this set numerically. Then a parallel implementation is presented. The parallel implementation is based on domain decomposition, where the original calculation domain is decomposed into several blocks, each of which given to a processing element. All nodes then execute computations in parall
... Show More