Preferred Language
Articles
/
ijs-11397
A Hybrid Estimation System for Medical Diagnosis using Modified Full Bayesian Classifier and Artificial Bee Colony
...Show More Authors

This paper presents a hybrid approach called Modified Full Bayesian Classifier (M-FBC) and Artificial Bee Colony (MFBC-ABC) for using it to medical diagnosis support system. The datasets are taken from Iraqi hospitals, these are for the heart diseases and the nervous system diseases. The M-FBC is depended on common structure known as naïve Bayes. The structure for network is represented by D-separated for structure's variables. Each variable has Condition Probability Tables (CPTs) and each table for disease has Probability. The ABC is easy technique for implementation, has fewer control parameters and it could be easier than other swarm optimization algorithms, so that hybrid with other algorithms to reach the optimal structure. In the input stage, the symptoms and the medical history for the patient are processed through the BNs structures to obtain from Modified Full Bayesian Classifier- Artificial Bee Colony (MFBC-ABC). The proposed system inputs all medical dataset and it filters and extracts the dataset. After the evaluation of the structures, the system can select the best optimal structure by determining the accepted accuracy. The accuracy for M-FBC model is approximately (93%) for heart diseases and approximately (98%) for nervous system diseases. While in The MFBC-ABC model, the accuracy is approximately (100%) for heart diseases and is approximately (99%) for nervous model diseases. The experimental results shown that the results for MFBC-ABC is better than on M-FBC.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 01 2012
Journal Name
Journal Of Computer Science
Peer-to-Peer Video Conferencing Using Hybrid Content Distribution Model
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Physica Medica
Quantitative analysis of sentinel lymph node detection using a novel small field of view hybrid gamma camera (HGC)
...Show More Authors

Introduction The Hybrid Gamma Camera (HGC) is being developed to enhance the localisation of radiopharmaceutical uptake in targeted tissues during surgical procedures such as sentinel lymph node (SLN) biopsy. Purpose To assess the capability of the HGC, a lymph-node-contrast (LNC) phantom was constructed for an evaluative study simulating medical scenarios of varying radioactivity concentration and SLN size. Materials and methods The phantom was constructed using two methyl methacrylate PMMA plates (8 mm thick). The SLNs were simulated by drilling circular wells of diameters ranging between 10 mm and 2.5 mm (16 wells in total) in one plate. These simulated SLNs were placed underneath scattering material with thicknesses ranging between 5 mm

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Sep 06 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Scopus
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of bubble size in Bubble columns using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Mar 23 2022
Journal Name
Modern Sport
Using Artificial intelligence to evaluate skill performance of some karate skills
...Show More Authors

Human beings are starting to benefit from the technology revolution that witness in our time. Where most researchers are trying to apply modern sciences in different areas of life to catch up on the benefits of these technologies. The field of artificial intelligence is one of the sciences that simulate the human mind, and its applications have invaded human life. The sports field is one of the areas that artificial intelligence has been introduced. In this paper, artificial intelligence technology Fast-DTW (Fast-Dynamic Time Warping) algorithm was used to assess the skill performance of some karate skills. The results were shown that the percentage of improvement in the skill performance of Mai Geri is 100%.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Hybrid vs Ensemble Classification Models for Phishing Websites
...Show More Authors

Phishing is an internet crime achieved by imitating a legitimate website of a host in order to steal confidential information. Many researchers have developed phishing classification models that are limited in real-time and computational efficiency.  This paper presents an ensemble learning model composed of DTree and NBayes, by STACKING method, with DTree as base learner. The aim is to combine the advantages of simplicity and effectiveness of DTree with the lower complexity time of NBayes. The models were integrated and appraised independently for data training and the probabilities of each class were averaged by their accuracy on the trained data through testing process. The present results of the empirical study on phishing websi

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon May 31 2021
Journal Name
Journal Of Research In Medical And Dental Science
A Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique
...Show More Authors

A Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad

View Publication Preview PDF