Preferred Language
Articles
/
ijs-11397
A Hybrid Estimation System for Medical Diagnosis using Modified Full Bayesian Classifier and Artificial Bee Colony
...Show More Authors

This paper presents a hybrid approach called Modified Full Bayesian Classifier (M-FBC) and Artificial Bee Colony (MFBC-ABC) for using it to medical diagnosis support system. The datasets are taken from Iraqi hospitals, these are for the heart diseases and the nervous system diseases. The M-FBC is depended on common structure known as naïve Bayes. The structure for network is represented by D-separated for structure's variables. Each variable has Condition Probability Tables (CPTs) and each table for disease has Probability. The ABC is easy technique for implementation, has fewer control parameters and it could be easier than other swarm optimization algorithms, so that hybrid with other algorithms to reach the optimal structure. In the input stage, the symptoms and the medical history for the patient are processed through the BNs structures to obtain from Modified Full Bayesian Classifier- Artificial Bee Colony (MFBC-ABC). The proposed system inputs all medical dataset and it filters and extracts the dataset. After the evaluation of the structures, the system can select the best optimal structure by determining the accepted accuracy. The accuracy for M-FBC model is approximately (93%) for heart diseases and approximately (98%) for nervous system diseases. While in The MFBC-ABC model, the accuracy is approximately (100%) for heart diseases and is approximately (99%) for nervous model diseases. The experimental results shown that the results for MFBC-ABC is better than on M-FBC.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Construct a New System as a Combining Function for the LFSR in the Stream Cipher Systems Using Multiplicative Cyclic Group
...Show More Authors

In this paper, we construct a new mathematical system as Multiplicative Cyclic Group (MCG), called a New Digital Algebraic Generator (NDAG) Unit, which would generate digital sequences with good statistical properties. This new Unit can be considered as a new basic unit of stream ciphers.

A (NDAG) system can be constructed from collection of (NDAG) units using a Boolean function as a combining function of the system. This system could be used in cryptography as like as Linear Feedback Shift Register (LFSR) unit. This unit is basic component of  a stream cipher system.

View Publication Preview PDF
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Fri Oct 07 2022
Journal Name
Texas Journal Of Engineering And Technology
Estimation of Pore Pressure and In-Situ Stresses for Halfaya Oil Field: A Case Study
...Show More Authors

Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Intelligent Systems And Applications In Engineering
Artificial Intelligence Based Statistical Process Control for Monitoring and Quality Control of Water Resources: A Complete Digital Solution
...Show More Authors

Scopus (3)
Scopus
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Aro-the Scientific Journal Of Koya University
Membrane Computing for Real Medical Image Segmentation
...Show More Authors

In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Production of Castor Oil for Medical Uses
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Smart Healthcare Medical Bracelet using the Internet of Things
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Smart Healthcare Medical Bracelet using the Internet of Things
...Show More Authors

View Publication
Scopus Crossref