This paper aims to study the asymptotic stability of the equilibrium points of the index 2 and index 3 Hesenberg differential algebraic equations. The problem reformulated to an equivalent explicit differential algebraic equations system, so the asymptotic stability is easily investigated. The singular points such as impasse points and singularity induced bifurcation points are identified in this kind of differential algebraic equations by using conclusion of the explicit differential algebraic equations.
A fuzzy valued diffusion term, which in a fuzzy stochastic differential equation refers to one-dimensional Brownian motion, is defined by the meaning of the stochastic integral of a fuzzy process. In this paper, the existence and uniqueness theorem of fuzzy stochastic ordinary differential equations, based on the mean square convergence of the mathematical induction approximations to the associated stochastic integral equation, are stated and demonstrated.
The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
This paper is concerned with the oscillation of all solutions of the n-th order delay differential equation . The necessary and sufficient conditions for oscillatory solutions are obtained and other conditions for nonoscillatory solution to converge to zero are established.
A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.
In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when theï€ ï¡-level equals one.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreIn this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.