Al-Qudis power plant was chosen, as one of the power stations of Baghdad, to investigate the effects of Cadmium that emitted from combustion of crude oil in that power plant on the workers' glutathione serum level. Air samples were taken seasonally during August 2011- July 2012 from four sites at Al- Qudis power plant which are oil treatment unit 1(site 1), oil treatment 2 (site2), pre –chimney 1(site 3) and pre-chimney 2 (site 4), to measure levels of heavy metal (cadmium) under study. Blood samples were collected from the workers to estimate the heavy metal Cadmium. Air cadmium levels during summer (August and September) were varied from 6.26 ± 0.6 μg/m3 at site 1 to 6.89 ± 0.67 μg/m3 at site 3, while in spring (end of March, and end of April); these figures were ranged from 4.95 ± 0.39 μg/m3 at site 4 to 6.08 ± 0.5 μg/m3 at site 2. However, autumn (end of October and November) had mean values lied between 4.89 ± 0.6 μg/m3 at site 3 and 5.7 ± 0.57 μg/m3 at site 2. Winter (end of December 2011,January and February 2012)data gave a range of 4.51 ± 0.46 μg/m3 at site 4 and 4.98 ± 0.57 μg/m3 at site 3. The current results exceeded the acceptable levels of Cd for WHO which is around 0.3 μg/m3. The results of current study showedthatthe mean value ofcadmiumin the blood of occupational sampleswas6.418 ± 0.636 μg/l which was significantly higher than those of (P≤ 0.05) environmental (5.247 ± 0.418 μg/l) and (P≤ 0.01) control (1.854±0.41 μg/l) samples.For reduced Glutathione (GSH) concentration, the current study results showed the highest value 5.4 ± 0.52 μmol/l in respect to control sample, while the lowest data 2.2595 ± 0.412 μmol/l and 2.6625 ± 0.475 μmol/l have been found in environmental and occupational samples, respectively.These results indicate that heavy metal (cadmium) influence GSH level of Al-Qudis's workers.
New chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complexes are identified as octahedral for (Rh & Pt) complexes a
... Show MoreA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a signifcantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p]=0.009; corrected p [pc]=0.027) and was associated with a lower risk of HBV infection (odds ratio [OR]=0.49; 95% confdence interval [CI]=0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR=0.25; 95% CI=0.08–0.81; p=0.02) and GG (10.0 vs. 16.7; OR=0.25; 95% CI=0.07–0.91; p=0.036), but the pc value was not signifcant (0.12 and 0.126, respec‑ tively). Serum IL35 levels showed signifcant difere
... Show MoreA new ligand complexes have been synthesis from reaction of metal ions of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with schiff base LH. 5-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-2-phenyl-2,4-dihydro-pyrazol-3-one, this ligand was characterized by Fourier transform infrared (FTIR), UV-vis, 1H, 13CNMR, and mass spectra. All complexes were characterized by techniques micro analysis C.H.N, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements and magnetic susceptibility. The ligand acts as bidentate, coordination through nitrogen atom from azomethin group and deprotonated phenolic oxygen atom. The spectroscopic and analytical measurements showed that
... Show Morefour coordinated complexes for divalent metal ions : Mn, Fe, Co, Ni, Cu and Cd have been synthesized using bidentate Schiff base ligand type (NN)formed by the condensation of o-phenylenediamine , p- methylbenzadehyde and furfural in methanol. The ligand was reacted with divalent metal chloride forming complexes of the types :[M(L)Cl2] where : MII=Mn, Fe, Ni, Cu, and Cd . These new compounds were characterized by elemental analysis, spectroscopic methods (FT-IR, U.V-Vis, 1HNMR (for ligand only and atomic absorption) , magnetic susceptibility, chloride content along with conductivity measurement. These studies revealed that the geometry for all complexes about central metal ion is tetrahedral.
In this work lactone (1) was prepared from the reaction of p-nitro phenyl hydrazine with ethylacetoacetate, which upon treatment with benzoyl chloride afforded the lactame (2). The reaction of (2) with 2-amino phenol produced a new Schiff base (L) in good yield. Complexes of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) with the new Schiff base (L) have been prepared. The compounds (1, 2) were characterized by FT-IR and UV spectroscopy, as well as characterizing ligand (L) by the same techniques with elemental analysis (C.H.N) and (1H-NMR). The prepared complexes were identified and their structural geometries were suggested by using elemental analysis (C.H.N), flame atomic absorption technique, FT-IR and UV-Vis spectroscopy, in additio
... Show MoreIn this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.