As result of exposure in low light-level are images with only a small number of
photons. Only the pixels in which arrive the photopulse have an intensity value
different from zero. This paper presents an easy and fast procedure for simulating
low light-level images by taking a standard well illuminated image as a reference.
The images so obtained are composed by a few illuminated pixels on a dark
background. When the number of illuminated pixels is less than 0.01% of the total
pixels number it is difficult to identify the original object.
Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
Aspergillus flavus was tested for its ability to degrade naphthalene by using solid mineral salts medium (SMS) with different concentrations 100, 300, 500 ppm of naphthalene. Results showed that 100ppm was the best concentration consumed by the fungal test then 300ppm and 500ppm the results for secondary test by using Liquid Mineral Salts Medium (LMSM) 95% of degradation for 100ppm then75% for 300ppm and 30% of degradation for 500ppm then the fungal test was tested for its ability to produce lignolytic enzymes results revealed that lignin peroxidase enzyme was only produced .then fungal test exposed to U.V light and the result showed after 10 minutes of U.V light exposure the degradation ratio were 91% for 100ppm then 79% for 300ppm and
... Show MoreA fully automatic electrothermal atomic emission spectrometry (ETA-AES) is described. This system is based on an echelle monochromator modified for wave¬length modulation which is completely controlled by microcomputer . The advantages of the system in atomic spectrometry have been discussed . Aspects of the analytical performances such as calibration ? dection limit, precision , and recovery for copper are considered . This system is applied for routine determination of copper in commercial powdered mill? by slurr>' atomization versus aqueous atomization techniques.
Test anxiety for intermediate level The current study aims to measure the test anxiety of research’s sample and to identify the statistical differences of test anxiety, considering two variables gender and students classes level (first and third intermediate class). To do this, a stratified random sampling of (300) student from first and third intermediate classes had selected from both the karkh and Rusafa sides of Baghdad province for the academic year 2015-2016. The author tested the whole sample by using the test anxiety scale that had tested for its validity and reliability. The results revealed that the research’s sample as a whole was suffering from test anxiety, there were a statistical differences between male and female tha
... Show Morethis work, a simple method was used to prepare the MnO2 nanoparticles. These nanoparticles then were characterized by several techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscope (AFM). The results showed that the diffraction peak of MnO2 nanoparticles was similar to that of standard data. The images of AFM and SEM indicated that the MnO2 nanorods were growing from the MnO2 nano spherical shape. PVA-pentaerythritol/MnO2 nanocomposite films were fabricated by evaporating casting method. The dielectric constant and loss tangent of P-Ery/MnO2 films were measured between 10 kHz and 1 MHz using LCR. As the content of MnO2 increased, the dielectric constant
... Show MoreThe main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones
The research aims to develop and build a plasma jet system operating under atmospheric pressure.for biological purposes. The advanced plasma system consists of a power supply and a plasma torch. The source of the development of the system is a previous laboratory system that was developed by changing the voltage and frequency of the power supply, as the power provider equips the system with a voltage in the form of a sine wave whose value is fixed at about (7.5kV) peak to peak and its frequency is about (28 kHz). The plasma torch consists of a teflon tube with of width of (10 m ) located at (10mm) from the end of the tube. The current waveform and voltage wave were measured using a current and voltage sensor and an oscilloscop
... Show MoreThis research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar d
... Show MoreUltrasound has been used as a diagnostic modality for many intraocular diseases, due its safety, low cost, real time and wide availability. Unfortunately, ultrasound images suffer from speckle artifact that are tissue dependent. In this work, we will offer a method to reduce speckle noise and improve ultrasound image to raise the human diagnostic performance. This method combined undecimated wavelet transform with a wavelet coefficient mapping function: where UDWT used to eliminate the noise and a wavelet coefficient mapping function used to enhance the contrast of denoised images obtained from the first component. This methods can be used not only as a means for improving visual quality of medical images but also as a preprocessing
... Show More