Preferred Language
Articles
/
ijs-10158
A Genetic Based Optimization Model for Extractive Multi-Document Text Summarization
...Show More Authors

Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datasets (d061j through d070f). Results clarify the effectiveness of the proposed model when compared with another state-of-the-art model.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
Journal Of The College Of Languages (jcl)
Some innovative word-formation processes in popular Internet texts in Russian and Arabic: Некоторые Инновационные словообразовательные процессы в популярных интернет-текстах в русском и арабском языках
...Show More Authors

       The present article discusses innovative word-formation processes in Internet texts, the emergence of new derivative words, new affixes, word-formation models, and word-formation methods. Using several neologisms as an example, the article shows both the possibilities of Internet word-making process and the possibilities of studying a newly established work through Internet communication. The words selected for analysis can be attributed to the keywords of the current time. (In particular, the words included in the list of "Words of 2019") there are number of words formed by the suffix method, which is the traditional method of the Russian word formation. A negation of these words is usually made thro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Selection of variables Affecting Red Blood Cell by Firefly Algorithm
...Show More Authors

Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More