In this paper, the nonclassical approach to dynamic programming for the optimal control problem via strongly continuous semigroup has been presented. The dual value function VD ( .,. ) of the problem is defined and characterized. We find that it satisfied the dual dynamic programming principle and dual Hamilton Jacobi –Bellman equation. Also, some properties of VD (. , .) have been studied, such as, various kinds of continuities and boundedness, these properties used to give a sufficient condition for optimality. A suitable verification theorem to find a dual optimal feedback control has been proved. Finally gives an example which illustrates the value of the theorem which deals with the sufficient condition for optimality.
The study intends to interpretation of well logs to determine the petrophysical parameters for Khasib, Tanuma, and Sa'di formations in Halfaya Oil Field. Where this field is located 30 kilometers south-east of the Amara city and it is considered as one of the important fields in Iraq because of the high production of oil, because Khasib, Tanuma, and Sa'di are f carbonates reservoirs formations and important after the Mishrif Formation because of the lack of thickness of the formations compared to the amount of oil production. The Matrix Identification (MID) and the M-N crossplot were used to determine the lithology and mineralogy of the formations; through the diagrm it was found the three formations consisted mainly of calcite with some
... Show MoreThe main objective of" this paper is to study a subclass of holomrphic and univalent functions with negative coefficients in the open unit disk U= defined by Hadamard Product. We obtain coefficients estimates, distortion theorem , fractional derivatives, fractional integrals, and some results.
This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step opt
... Show MoreThis work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads
... Show MoreThis work evaluates the economic feasibility of various production scenarios for the Zubair reservoir in the Kifl oil field using cash flow and net present value (NPV) calculations. The Kifl field is an exploratory field that has not yet been developed or assessed economically. The first well was drilled in 1960, and three other wells were later drilled to assess the oil accumulation, so in this research, Different production scenarios were evaluated economically. These scenarios were proposed based on the reservoir model of the Zubair formation in the field. The research methodology used QUE$TOR software to estimate capital expenditures (CapEx) and operating expenditures (OpEx) based on field-level data, production prof
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreIn this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).