This study included the compromised the containing Hardness and some ions of treated water in central Karbala drinking water treatment station with Iraqi and international drinking water criteria. Also, this study was attempted to focus on probable pollution sources. The Hardness and other waters salts Sulphates (SO4), Chloride ion (Cl-), Calcium ion (Ca+2), and Magnesium ion (Mg+2) tests criteria were determined on water samples taken from Al-Hussainia River water source, treated drinking water during October-November 2013 to August - September 2014.Study results revealed an increasing in Total hardness (TH), sulfate, chloride, calcium, in winter (December- January) 2014. In addition, the results showed a decrease in above mentioned criteria in (August-September) 2014.Study finding revealed that the values of chloride, calcium, sulphate, were out of the Iraqi and the international standards water. While total hardness, magnesium, and chloride concentrated were within Iraqi and international acceptable standards.
This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
This paper defines a method for sputtering high strength, extremely conductive silver mirrors on glass substrates at temperatures ranging from 20o to 22o C. The silver coated layer thicknesses in this work ranges from 7.5 to 16.1 nm using sputtering time from 10 to 30 min at power 25 W, 13.7 to 29.2 nm for time 10 to 30 min at 50 W, 15.7 to 26.4 nm for time 10 to 30 min at 75 W and 13.8 to 31.1 nm for time 10 to 30 min at 100 W. The optimum values of pressure and electrode gape for plasma sputtering system are 0.1 mbar and 5 cm respectively. The effect of DC sputtering power, sputtering duration or (sputtering time), and thickness on optical properties was investigated using an ultraviolet-visible spectrophot
... Show MoreThe present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
Ground penetrating radar (GPR) technology is used to determine the extent to which this technique can detect with a high-frequency range from 10 MHz to 1000 MHz into the ground by a transmitting antenna and A graveyard was found beneath the depth of the three meters under Surface of the earth in the shrine of the Prophet Houd and Saleh in Al-Najaf Governorate surveyed by through 4 tracks. Ground Penetrating Radar (GPR) is a device that transmits short pulses of electromagnetic energy with pulse duration about 1 ns to 20 ns. applying the filter Time- Zero to the same profile at a depth (3m) , Two types of antennas were used in this study, with two different frequencies antennas (250, 500 )MHz Three tracks (23,25,2
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreIn this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.
The global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show More