Preferred Language
Articles
/
ijs-10045
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with missing value and without
missing value, where the missing value is one attribute is missing from one sample
for data set. The test result is show SMO is the best algorithm, especiallywhen the
research removes the samples that contained the missing value.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Serological markers “CEA test & sAPRIL test” in Iraqi patients with colon cancer
...Show More Authors

Background: Colonic cancer is a very common disease world-wide being fourth most common cancer characterized by abnormal proliferation of the inner wall of colon then taking full colon wall thickness then spreading to surrounding lymph nodes and tissues and finally distant metastasis. It is one of most complicated diseases with debilitating symptoms which becomes more sever , prominent and specific with advancing stage with high percent of fatality and relatively short survival if diagnosed late or if left untreated.
Objective: To evaluate the efficacy of serum CEA & sAPRIL levels in the diagnosis and screening of colon cancer and their validity for this.
Patients and methods: This study was applied on 35 patients with colonic

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Hybrid CNN-SMOTE-BGMM Deep Learning Framework for Network Intrusion Detection using Unbalanced Dataset
...Show More Authors

This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
East European Journal Of Physics
Evaluation of the Influence of Body Mass Index and Signal-to-Noise Ratio on the PET/CT Image Quality in Iraqi Patients with Liver Cancer
...Show More Authors

Image quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Feb 10 2016
Journal Name
ألمؤتمر الدولي العلمي الخامس للاحصائيين العرب/ القاهرة
Proposition of Modified Genetic Algorithm to Estimate Additive Model by using Simulation
...Show More Authors

Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo

... Show More
Preview PDF
Publication Date
Wed Jan 02 2008
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Age Related Changes in Cardiovascular Response to Oxidative Stress Induced by Exercise
...Show More Authors

Background:
There are many circulatory changes that occur during exercise in order to supply the tremendous blood flow required by the muscles during the stimulatory effects on circulation
by the mass sympathetic discharge, the increased arterial pressure and cardiac output. The metabolic effects and the oxidative stress as a result of the work load on cardiac and skeletal
muscles could also show changes.
Objective:
This study was designed to investigate the effects of aging process on the vascular response during exercise and also in the oxidative stress according to age.
Subjects and Methods: 
Eight healthy Iraqi subjects were enrolled in this study. Divided into three groups according to a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Acs Omega
Catalytic Hydrogenation of p-Chloronitrobenzene to p-Chloroaniline Mediated by $γ$-Mo2N
...Show More Authors

Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit

... Show More
Preview PDF
Publication Date
Thu Feb 16 2017
Journal Name
Signal, Image And Video Processing
Enhancing Prony’s method by nuclear norm penalization and extension to missing data
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref