Preferred Language
Articles
/
ijs-10045
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with missing value and without
missing value, where the missing value is one attribute is missing from one sample
for data set. The test result is show SMO is the best algorithm, especiallywhen the
research removes the samples that contained the missing value.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 15 2019
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Combining Convolutional Neural Networks and Slantlet Transform For An Effective Image Retrieval Scheme
...Show More Authors

In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),

... Show More
Scopus (10)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks
...Show More Authors

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Prioritized Text Detergent: Comparing Two Judgment Scales of Analytic Hierarchy Process on Prioritizing Pre-Processing Techniques on Social Media Sentiment Analysis
...Show More Authors

Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system
...Show More Authors

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation of training programs directed toward the diagnosis of the phenomenon of financial and administrative corruption
...Show More Authors

 Abstract

It considers training programs is an important process contributing to provide employees with the skills required to do their jobs efficiently and effectively, so it should be concerned with and the focus of all government our organizations, and perhaps the most important reasons that I was invited to select the subject (evaluation of training programs directed toward the diagnosis of the phenomenon of financial and administrative corruption) It is the importance of those programs working in the regulatory institutions General and the Office of Inspector General of Finance and the Ministry particularly for employees because of their role in the development of their skills and their experience and their beha

... Show More
View Publication
Crossref
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Scenario theory philosophy and methodologies
...Show More Authors

Purpose: The purpose of this study was to clarify the basic dimensions, which seeks to indestructible scenarios practices within the organization, as a final result from the use of this philosophy.

Methodology: The methodology that focuses adoption researchers to study survey of major literature that dealt with this subject in order to provide a conceptual theoretical conception of scenarios theory  .

The most prominent findings: The only successful formulation of scenarios, when you reach the decision-maker's mind wa takes aim to form a correct mental models, which appear in the expansion of Perception managers, and adopted as the basis of the decisions taken. The strength l

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Pressure Control of Electro-Hydraulic Servovalve and Transmission Line Effect
...Show More Authors

The effected of the long transmission line (TL) between the actuator and the hydraulic control valve sometimes essentials. The study is concerned with modeling the TL which carries the oil from the electro-hydraulic servovalve to the actuator. The pressure value inside the TL has been controlled by the electro-hydraulic servovalve as a voltage supplied to the servovalve amplifier. The flow rate through the TL has been simulated by using the lumped π element electrical analogy method for laminar flow. The control voltage supplied to servovalve can be achieved by the direct using of the voltage function generator or indirect C++ program connected to the DAP-view program built in the DAP-card data acqu

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref