Preferred Language
Articles
/
ijs-10045
Best Way to Detect Breast Cancer by UsingMachine Learning Algorithms
...Show More Authors

Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with missing value and without
missing value, where the missing value is one attribute is missing from one sample
for data set. The test result is show SMO is the best algorithm, especiallywhen the
research removes the samples that contained the missing value.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2013
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Molecular detection of Epstein Barr Virus in Women with Breast cancer
...Show More Authors

Background: Epstein Barr Virus (EBV) infection has been implicated in pathogenesis of several types of carcinomas such as nasopharyngeal carcinoma, gastric cancer and bladder cancer and has recently been associated with breast cancer.
Objective: To evaluate the relations between Epstein Barr virus-encoded small RNA (EBER) and breast cancer.
Methods: Twenty two cases of breast cancer were retrieved from the Al-Kadhimiya Teaching Hospital in Baghdad. Clinical data were analyzed from the medical records and formalin fixed, paraffin embedded tumor tissue were examined by Chromogeneic in situ hybridization (ISH) technique for the detection of EBER.
Results: The expression of EBER in tissues patients with breast cancer in the present

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A Survey on Arabic Text Classification Using Deep and Machine Learning Algorithms
...Show More Authors

    Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th

... Show More
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection of Serum Ferritin in Women with Breast Cancer
...Show More Authors

 

Breast cancer is one of the most common cancers in females. In Iraq there are noticeable elevation in incidence rates and prevalence of advanced stages of breast cancer. Ferritin is intracellular iron storage protein abundant in circulation and its main application in differential diagnosis of anemia.

The level of serum ferritin was found raised in various cancers including breast cancer. The aim of this study was to assess whether the serum ferritin concentration would be altered in Iraqi women with breast cancer and it could be related to progression of disease.

Sixty eight females participated in this study. The mean age of these females was 53.25± 9.52 .The level of serum ferritin was measured in 24

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 20 2021
Journal Name
The Breast Journal
Trastuzumab beyond progression in HER2‐positive metastatic breast cancer
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Detection of Human Papilloma Virus type 6 and type 11 in women with Breast Cancer by in situ hybridization technique.
...Show More Authors

Background: Breast cancer is one of the common malignancies among women worldwide. Human papillomavirus (HPV) infections have been linked to many human cancers in addition to cervical cancer and one of them is breast cancer.
Objective: To investigate the presence of human papilloma virus type 6 and type 11in breast cancer tissue specimens by in situ hybridization technique.
Patients and Methods: Thirty four formalin-fixed, paraffin embedded tissue blocks from breast cancer patients were obtained from the archives of the pathology laboratory of Al-Yarmouk Teaching Hospital from January 2011 to July 2012. In addition formalin-fixed, paraffin embedded blocks tissue for twenty fibroadenoma of breast were collected and used as control g

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 01 2017
Journal Name
Gulf Journal Of Oncology
Clinical and Pathological Characteristics of Triple Positive Breast Cancer among Iraqi Patients
...Show More Authors

Background: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th

... Show More
View Publication Preview PDF