Building a 3D geological model from field and subsurface data is a typical task in
geological studies involving natural resource evaluation and hazard assessment. In
this paper a 3D geological model for Asmari Reservoir in Fauqi oil field has been
built using petrel software. Asmari Reservoir belongs to (Oligocene- Lower
Miocene), it represents the second reservoir products after Mishrif Reservoir in Fauqi
field. Five wells namely FQ6, FQ7, FQ15, FQ20, FQ21 have been selected lying in
Missan governorate in order to build Structural and petrophysical (porosity and water
saturation) models represented by a 3D static geological model in three directions
.Structural model shows that Fauqi oil field represents un cylindrical anticlinal fold
which contains number of culminations at northern and southern parts separated by
depressions. After making zones for Asmari reservoir, which is divided into 4 zones
(Jeribe/ Euphrates and Kirkuk group which includes Upper Kirkuk, Buzurgan
member, Lower and Middle Kirkuk) , Layers are built for each zone of Asmari
reservoir depending on petrophysical properties. Petrophysical models (porosity and
water saturation) have been constructed for each zone of Asmari reservoir using
random function simulation algorithm. According to data analyses and the results
from modeling, the Upper Kirkuk zone which divided into five layers is a good
reservoir unit regarding its good petrophysical properties (high porosity and low water
saturation) with high presence of oil in economic quantities. Cross sections of porosity
model and water saturation model were built to illustrate the vertical and horizontal
distribution of petrophysical properties between wells of Fauqi oil field.
This study aims to determine the petrophysical characteristics of the three wells in the Kifl Oilfield, central Iraq. The well logs were used to characterize hydrocarbon reservoirs to assess the hydrocarbon prospectivity, designate hydrocarbon and water-bearing zones, and determine the Nahr Umr Formation's petrophysical parameters. The Nahr Umr reservoir mainly consists of sandstone at the bottom and has an upper shale zone containing a small proportion of oil. The geophysical logs data from three oil wells include gamma-ray, resistivity, neutron, density, acoustic, and spontaneous potential logs. A gamma-ray log was employed for lithology differentiation, and a resistivity log was used to determine the response of distinct zones
... Show MoreThis research represents a reflection seismic study (structural and stratigraphic) for a (852) km2 area located in the south of Iraq within the administrative border of the province of Al-Muthanna and Qadisiyah province ,by using 2-D seismic data from Oil Exploration company three main seismic reflectors are picked, these are (Zubair and Yamama) Formations which they deposited during the Cretaceous age , and (Gotnia) Formation which deposited during Jurassic age .Structural maps of Formations are prepared to obtain the location and direction of the sedimentary basin and shoreline ,time, velocity and depth maps are drawn depending on the structural interpretation of the picked reflectors and show several structural feature as nose structu
... Show MorePetrophysical properties of Mishrif Formation at the Tuba field determined from interpretation of open log data of(Tu-2,3,4,5,6,12,24,and 25) wells. These properties include total (effected) and secondary porosity, as well as moveable and residual oil saturation into invaded and uninvaded zones. According to Petrophysical properties it is possible to divided Mishrif Formation into three reservoir units (RU1,2,and 3) separated by four cap rocks (Bar1,2,3,and 4) . Three-dimension reservoir model is established by used (Petrel, 2009) Software for each reservoir units. Result shows that the second and third reservoir units represent important reservoir units of Mishrif Formation. Thickness and reservoir properties enhanced toward middle and
... Show MoreIn this study the (geoelectric – hydrogeologic) parameters which are obtained by the
quantitative interpretation of (80) Schlumberger Vertical Electrical Sounding (VES)
points distributed in six linear profiles within the study area are used in addition to
(6) pumping test locations for the groundwater reservoir located to the south of Jabal
Sinjar (Sinjar anticline). The studied area covers about 7920Km2. The (VES) field
readings were interpreted manually by using the auxiliary point method-partial
resistivity curve matching,then the interpreted results enhanced by using computer
software specialized for the 1D- (VES) resistivity curves interpretation. The (VES)
results analyzed by using modern techniques in or
The measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).