This research represents a 3D seismic structural study for 602.62 Km2 of Dujaila
Oil Field which is located 55 Km Northwest of Mysan province and 20 Km Southwest
of Ali-AlSharki region within unstable Mesopotamian basin.
Synthetic traces are prepared by using available data of two wells (Du-1, Du-2), in
order to define and pick the reflectors. Two reflectors are picked that represent the top
and bottom of Mishrif Formation, in addition to five units within this Formation are
picked, they named Units 1, 2, 3, 4, and 5.
Time maps for the top and bottom of Mishrif reflectors are drawn to get the
structural picture, these maps show general dip of layers toward NE, and thus, there
are two enclosure domes in the middle of Dujaila Oil Field where two wells (Du-1,
Du-2) are found.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreThe Hartha Formation is a major carbonate succession deposited during the Late Campanian period. The current study depends on four selected wells (EB 1, 2, 4 and 30) within the East Baghdad oil field to study electrofacies and petrophysical properties related to the reservoir characterization.
The Hartha Formation is divided into three electro-facies units using GR and SP logs in Petrel software. The upper unit of the Hartha Formation is composed mainly of limestone. The middle unit is composing of thick layers of shale. The lower unit is composed mainly of limestone with few shale layers. The three units are divided into three types of rocks in relation to the total porosity: 1. High-moderate active porosity rocks (type I)
... Show MoreLand forms are result from interaction between lithosphere, atmosphere, hydrosphere and biosphere. Lithosphere composed of lithologic units and the main units of the study area are: limestone, marl, marley limestone, sandstone, pebbly sandstone, mudstone, claystone and secondary gypsum in addition to Quaternary sediments. Landforms of the study area can be subdivided according to their origin into many units: 1- Structural- denudational: plateau, mesas, hills, cliffs and wadis; 2- Denudational: desert pavement and mushroom rock; 3-Mass movements; 4- Solution: lake, salt marsh, piping caves; 5- Springs; 6- Fluvial: terraces, alluvial fan, infilled wadi, flood plain; 7- Drainage units; 8-Evaporational: sabkha, secondary
... Show MoreA quantitative analysis of geomorphic indices was carried out to understand the impacts of tectonics on the geomorphological relief of drainage basins and alluvial fans. Based on field work, satellite images and aerial photographs interpretation, five stages of alluvial fanswere recognized within the study area. Theyare of a coalesced type, forming continuous belt of Bajada, andcovering vast areas whichextend along the southwestern limb of Hemrinanticline. The alluvial fans’ sediments lie unconformably over pre- Quaternary sediments represented by angular unconformity.The earlier stages of the fanswere developed during the Plio- Pleistocene age, whereas the later stage represents the sediments of the Holocene age. Fourdistinct seg
... Show MoreThe groundwater recharge from rainfall for the main shallow aquifer in the northeastern Missan governorate south of Iraq is investigated via classical and refined chloride mass balance techniques. Application of both techniques reveals that the mean annual groundwater recharge is 0.82 mm/y. The annual recharge received by the aquifer approximately reaches to three million cubic meters after multiply this figure by the area of the study area (about 1856 km2). This figure represents a renewable storage from which a sustainable management of the groundwater reserve could be implemented. The techniques applied are robust, costly-effective, and could be used with other methods such as groundwater table fluctuation method to give a more realis
... Show MoreA 3D geological model is an essential step to reveal reservoir heterogeneity and reservoir properties distribution. In the present study, a three-dimensional geological model for the Mishrif reservoir was built based on data obtained from seven wells and core data. The methodology includes building a 3D grid and populating it with petrophysical properties such as (facies, porosity, water saturation, and net to gross ratio). The structural model was built based on a base contour map obtained from 2D seismic interpretation along with well tops from seven wells. A simple grid method was used to build the structural framework with 234x278x91 grid cells in the X, Y, and Z directions, respectively, with lengths equal to 150 meters. The to
... Show MoreThe harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are
In recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD