In this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the bandgap energy decreases from 3.331 to 2.043 eV as seen by the band diagram. PDOS diagram was utilized to get the insight of the electronic structure of the atoms and the amount to which all energy bands contribute to a particular orbit of the atoms. As the V content grew, so did the PDOS for all of the states. The manipulation of bandgaps was carried out in a way that narrowing the bandgaps occurs, resulting in a redshift of the absorption spectrum in the IR region. At lower photon energies, the imaginary and real parts dielectric functions have increased. The effectiveness of V atoms on transmissivity especially in the low energy region of the V-doped ZnO perovskite has been verified compared to the other theoretical results.
Colloidal crystals (opals) made of close-packed polymethylmethacrylate (PMMA) were fabricated and grown by Template-Directed methods to obtain porous materials with well-ordered periodicity and interconnected pore systems to manufacture photonic crystals. Opals were made from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centered cubic (FCC) array. Optical properties of synthesized pores PMMA were characterized by UV–Visible spectroscopy. It shows that the colloidal crystals possess pseudo photonic band gaps in the visible region. A combination of Bragg’s law of diffraction and Snell’s law of refraction were used to calculate t
... Show MoreX-ray diffraction pattern reveled the tetragonal crystal system of SnO2 Thin films of SnO2 were prepared on glass substrates using Spray Pyrolysis Technique. The absorption and transmition spectra were recorded in the rang of 300-900nm, the spectral dependences of absorption coefficient were calculated from transmission spectra. The direct and allowed optical energy gap has been evaluated from plots of (αhυ)² vs. (hυ) . The energy gap was found to be 2.4-2.6eV. The optical constant such as extinction coefficient( k ) and absorption coefficient ( α) have been evaluated.
The paper reports the influence of the thickness on the some optical properties of Fe2O3 thin films,which were prepared by chemical Spray pyrolysis technique on glass substrate heated to 400˚c.The thickness of thin films (250,280,350)nm were measured by using weighting method. The optical properties include the absorbance and reflectance spectra,extinction coefficient,and real and imaginary part of the dielectric constant.The result showed that the optical constant(k,εr,εi)decreased with the increase of the thickness.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MoreIn this research thin films of (CdTe) have been prepared as pure and doped by Zn
with different ratios (1,2,3,4,5)% at thickness (400+25)nm with deposition rate (2±0.1)nm,
deposited on glass substrate at R.T. by using thermal evaporation in vacuum . All samples
were annealed at temperature (523,573,623,673)K at 1h.
The structural prop erties of all prepared thin films, doped and undoped have been
studied by using XRD. The analysis reveals that the structures of the films were
polycrystalline and typed cubic with a preferred orientation along (111) plane for the
undoped films with (2,3)% of zinc , and shifting (2ÆŸ) for doped films . The annealing films
at temperature 573 K and Zn:3% show decreasing in
In this work, we have investigated optical properties of the thermally evaporation PbS/CdS thin films. The optical constant such as (refractive index n, dielectric constant εi,r and Extinction coefficient κ) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of PbS/CdS films is calculate from (αhυ)1/2 vs. photon energy curve.
CdS films were prepared by thermal evaporation at pressure (10-6torr) of 1μm thickness onto glass substrate by using (Mo) boat. The optical properties of CdS films, absorbance, transmittance and reflectance were studied in wavelength range of (300-900)nm. The refractive index, extinction coefficient, and absorption coefficient were also studied. It's found that CdS films have allowed direct and forbidden transition with energy gap 2.4eV and 2.25eV respectively and it also has high absorption coefficient (α >104cm-1).
Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show More