In this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the bandgap energy decreases from 3.331 to 2.043 eV as seen by the band diagram. PDOS diagram was utilized to get the insight of the electronic structure of the atoms and the amount to which all energy bands contribute to a particular orbit of the atoms. As the V content grew, so did the PDOS for all of the states. The manipulation of bandgaps was carried out in a way that narrowing the bandgaps occurs, resulting in a redshift of the absorption spectrum in the IR region. At lower photon energies, the imaginary and real parts dielectric functions have increased. The effectiveness of V atoms on transmissivity especially in the low energy region of the V-doped ZnO perovskite has been verified compared to the other theoretical results.
Charge transfer in styryl dyes STQ-1, STQ-2,and STQ-3 with organic media system has been studied theoretically depending on the Franck- Condon rule and continuum dielectric model . The reorientation energies (eV) were evaluated theoretically depending on dipole momentum, dielectric constant , and refrective index n. The rate constant of charge transfer has been calculated depending on the reorientation energy (eV) ,effective free energy , potential height barrier , and coupling coefficient . A matlap program has been written to calculated the rate constant of charge transfer and other parameter. The results of calculations show that STQ-2 dye is more reaction for charge transfer compare with STQ-1 and STQ-3 dyes
The depth of causative source of gravity is one of the most important parameter
of gravity investigation. Present study introduces the theoretical solve of the
intersection point of the horizontal and vertical gradients of gravity anomaly. Two
constants are obtained to estimate the depth of causative source of gravity anomaly,
first one is 1.7807 for spherical body and the second is 2.4142 for the horizontal
cylinder body. These constants are tested for estimating the depth of three actual
cases and good results are obtained. It is believed that the constants derived on
theoretical bases are better than those obtained by empirical experimental studies.
In this work an experimental study of deposited silver nanoparticles on the core of optical fiber end at different time based on photodeposition technique is presented. The results demonstrated that the concentration of silver nanoparticles deposited on the core of optical fiber end was effected by the deposition time. The photodeposition system was fabricated using multi-mode optical fiber and laser diode source. The results show that the silver deposition concentration increases linearly with the deposition time. The deposition rate was 3.25 (wt/ s)
This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show MoreWe have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
The current research aims to show the impact of the international auditing standard IAS 540 in reducing income smoothing practices in Iraq. To achieve the objectives of the research, the researcher adopted a questionnaire for a sample of auditors in Iraq. Where 60 forms were distributed and after the questionnaire was retrieved and statistical analysis was done using the SPSS program, The research reached a number of results, the most important of which are: the existence of a statistically significant effect of the application of the international auditing standard IAS 540 in reducing income smoothing practices, The research recommended the necess
... Show MoreThis paper aims at the fact that most organizations today suffer from a waste of time, effort, and cost, and they have difficulty in achieving the best performance situations and compete strongly. The researcher distributed 108 questionnaires as a statistical analyzable sample society where the sample intentionally consists of general managers, department head, and division head. The questionnaire was formulated according to the Likert scale. The use of personal interviews and observations are additional tools for data collection and a number of statistical methods is used for data analysis such as simple regression and correlation coefficient (Pearson). One of the most prominent conclusions is that the company has adequate and c
... Show MoreThe inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlati
... Show More