Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O2 at 5 M HF. On the b-Si, nanowires with 250-950 nm heights and an average diameter of 150-280 nm are obtained. Low concentrations of H2O2 result in denser nanowires with an average length of 900-950 nm and diameters of about 150-190 nm. The b-Si exhibit outstanding broadband antireflection due to the refractive index grading effect represented as WAR within the 300-1100 nm wavelength region. B-Si obtained after etching in a solution with 0.62 M concentration of H2O2, demonstrate WAR of 7.5%. WAR of 7.5% results in an absorption of up to 95.5 % at a wavelength of 600 nm. The enhanced broadband light absorption yields maximum potential short-circuit current density (Jsc(max)) of up to 38.2 mA/cm2, or 45.2% enhancement compared to the planar c-Si reference.
To test the effect of 4 levels of nitrogen (i.e. 0, 45, 90 and 135 Kg N ha-1) as urea (46% N) and 3 levels of phosphorus (i.e. 0, 17.5 and 35 Kg P ha-1) as triple superphosphate (21.8% P) on yield and concentration of dill (Anethum graveolens L. local cultivar) seed oil this experiment was carried out during winter season of 1999 - 2000 at the experimental field of Agriculture College, Abu-Ghraib.
Both fertilizers were applied in two equal splits, first at seeds sowing and the second was added one month after emergence. Dried and ground seed samples were subjected to water distillation for extraction of volatile oils
Result indicated that fertilization of dill plants with 90 Kg N
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreWe investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreAn innovative two-step noncatalytic esterifcation technique was proposed to synthesize alkyl esters from free fatty acids simulated in waste cooking oil, as a pretreatment process for biodiesel production, without adding any catalyst under normal conditions of pressure and temperature. The efect of methanol:oil molar ratio, reaction time, mixing rate, and reaction temperature were investigated. The results confrmed that the conversion of the reaction was increased when increasing the methanol molar ratio and decreased in prolonged reaction temperature. High conversion (94.545%) was successfully achieved at optimized conditions of 115:1, 65:1 methanol:oil molar ratio in the frst step and second step, respectively, other conditions i
... Show MoreAn experiment was conducted in the field, Department of field crops , College of Agriculture , University of Baghdad during fall season 2011. To study the effect of interaction of water stress and hydrogen peroxide and potassium on the growth and yield of maize plant cultivar Bohooth 106. It Included the study of three levels of water stresses of 40 , 60 and 80% of the available water , (D1 , D2 and D3) respectively, three levels of hydrogen peroxide of concentrations (0 , 15 and 30 Mm), and foliar application of potassium at the concentration of 3000 mg K. L-1 K2SO4 and without applied potassium.. Split – Split with RCBD design with three replications were used. The levels of water stresses occupied the main plots , potassium lev
... Show MoreIn this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a fu
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
In this work an experimental study of deposited silver nanoparticles on the core of optical fiber end at different time based on photodeposition technique is presented. The results demonstrated that the concentration of silver nanoparticles deposited on the core of optical fiber end was effected by the deposition time. The photodeposition system was fabricated using multi-mode optical fiber and laser diode source. The results show that the silver deposition concentration increases linearly with the deposition time. The deposition rate was 3.25 (wt/ s)