Beryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexagonal polycrystalline wurtzite structure. The crystal structure showed a preferential orientation line at (101). Besides the nano thin film Be0.5Zn0.5O has all orientations of ZnO and BeO. Moreover, the calculated average crystallite size for nano thin film was 16.48 nm. The surface morphology of the nano thin films investigated by atomic force microscope (AFM) showed a decrease in the average grain sizes (94.8, 79.2 and 59.4 nm) with the increase of films thickness due to quantum confinement effect.
The present work involved synthesis of serval new substituted tetrazole via Schiff bases for trimethoprim drug by two steps. The first step involved direct reaction of different ketones and aldehydes with trimethoprim producing the corresponding Schiff bases (1-10), whereas the second step, involved preparation new tetrazoles derivatives (11-20) through reaction of the ready Schiff bases (in the first step) with sodium azidein in dioxin. The prepared compounds were characterized by UV, FT-IR, and some of them by 13C-NMR, 1H-NMR spectroscopy and physical properties.
With and without the use of magnetic fields, titanium dioxide (TiO2) nanoparticles were synthesized using the hydrothermal method at extremely high temperatures and pressures. Titanium tetra isopropoxide [Ti(C12H28O4)] was used for the preparation, which was performed at pH 7 and under temperatures of 160 and 190 ˚C. UV spectroscopy, XRD crystallography, FE-SEM microscopy were used for characterizations. From UV spectroscopy, the energy gap values were clearly affected by the increase in temperature and the presence of the magnetic field. At the temperatures of 160 and 190 oC for TiO2 without magnetic field, FE-SEM microscopy images have shown an average c
... Show MoreThis study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
In oil and gas well cementing, a strong cement sheath is wanted to insure long-term safety of the wells. Successful completion of cementing job has become more complex, as drilling is being done in highly deviated and high pressure-high temperature wells. Use of nano materials in enhanced oil recovery, drilling fluid, oil well cementing and other applications is being investigated. This study is an attempt to investigate the effect of nano materials on oil well cement properties. Two types of nano materials were investigated, which are Nano silica (>40 nm) and Nano Alumina (80 nm) and high sulfate-resistant glass G cement is used. The investigated properties of oil well cement included compressive strength, thickening
... Show MoreIn the last decades, using mineral admixture in concrete became very necessary to improve concrete properties and reduce CO2 emissions associated with the cement production process. Subsequently, more sustainable concrete can be obtained. Ternary blended cement containing two different types of mineral admixture can achieve ambitious steps in this trend. In this research, the synergic effects of mineral admixtures in ternary blended cement and its effects on concrete fresh properties, strength, durability, and efficiency factors of mineral admixture in ternary blended cement, were reviewed. The main conclusion reached after reviewing many literature pieces is that the concrete with ternary blended cement
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreNi2O3 nanomaterial, a phase of nickel oxide, is synthesized by a simple chemical process. The pure raw materials used in the present process were nickel chloride hexahydrate NiCl2.6H2O and potassium hydroxide KOH by utilizing temperature at 250 oC for 2 hour. The structural, morphological and optical properties of the synthesized specimens of Ni2O3 were investigated employing diverse techniques such as XRD, AFM, SEM and UV-Vis, respectively. The XRD technique confirms the presence of Ni2O3 nanomaterial with crystal size of 57.083 nm which indexing to the (2θ) of 31.82; this results revealed the Ni2O3 was a ph
... Show MoreA new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship