Preferred Language
Articles
/
ijp-97
Study the effect of CaCO3 nanoparticles on physical properties of biopolymer blend
...Show More Authors

Chitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial bonding between the CaCO3 nanoparticles and the [CH/(PVP-co-VAc)), homogenous distribution of the nanoparticles in the polymer blend, are assistance of noticeably raised mechanical durability. The thermal conductivity of the polymer blend and CaCO3 nanocomposite films show that it decreased in the adding of nanoparticle CaCO3. The solvability measurements display that the nanocomposite has promoted water resistance. The weight gain lowered with the increase of nano CaCO3. Blending chitosan CH with (PVP-co-VAc) enhanced strength and young modules of the nanocomposites and increased the absorption of water because hydrophilic of the blended polymers films. The effect of two types of positive S.aurous and negative E. coli was studied. The results showed that the nanocomposites were effective for both types, where the activity value ranged from (12 ~ 21). The best results were found for S.aurous bacteria.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Impact of thickness and heat treatment on some physical properties of thin Cu2SnS3 films
...Show More Authors

Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Study the Structural and Optical Properties of Cr doped SnO2 Nanoparticles Synthesized by Sol-Gel Method
...Show More Authors

View Publication
Scopus (48)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Enhanced Physical Absorption Properties of ZnO Nanorods by Electrostatic Self-Assembly with Reduced Graphene Oxide and Decorated with Silver and Copper Nanoparticles
...Show More Authors

The preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Effect of Nanocomposites TiO2 addition on the Dielectric Properties of Epoxy resin
...Show More Authors

Sheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.

View Publication Preview PDF
Publication Date
Fri Nov 09 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Effectiveness of Physical Education Program on the Domains of the University Students, Attitudes toward Physical Fitness
...Show More Authors

Objectives: To determine the effectiveness of physical education program on the domains of the university
students attitudes of physical activity and health, physical activity and mental health, physical activity and nutrition
toward physical fitness.
Methodology: A quasi-experimental design is carried out throughout the present study with the application of
test-retest approach through the period from February 3rd 2013 to June 30th 2013. The study is conducted on
purposive sample of(40) Undergraduate Students at the College of Science University of Baghdad . The sample is
Consisted of (20) males and (20) females. Questionnaire of two main parts, Personal and demographic
information and students' attitudes about phys

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Nanoparticles and Surfactant on Phase Inversion of Two Phases
...Show More Authors

In the present study, a pressure drop technique was used to identify the phase inversion point of oil-in-water to water-in-oil flows through a horizontal pipe and to study the effect of additives (nanoparticles, cationic surfactant and blend  nanoparticles-surfactant) on the critical dispersed volume fraction (phase inversion point). The measurements were carried  for mixture velocity ranges from 0.8 m/sec to 2.3 m/sec. The results showed that at low mixture velocity 0.8 and 1 m/sec there is no effect of additives and velocity on phase inversion point, while at high mixture velocities the phase inversion point for nanoparticles and blend (nanoparticles/surfactant) systems was delayed (postponed) to a higher value of the dispers

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
An Experimental Study to Demonstrate the Effect of Alumina Nanoparticles and Synthetic Fibers on Oil Well Cement Class G
...Show More Authors

    In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Physical and Mechanical Properties of Synthesized Doped Nanoferrite
...Show More Authors

Nanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting  tensile strength and Vicker

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 29 2024
Journal Name
Iraqi Journal Of Science
Determination of the Physical Properties of the Protoplanetary Disk Around WW Cha Stars
...Show More Authors

     The main goal of this work is to put a simple model of the spectral energy distribution of binary stars called WW Cha. This model is built up on the extracted data from various telescopes and archives for the target WW Cha stars and then analyzing them using a python environment. The result of the fitting proposes that there are two protoplanetary disks around the WW Cha star, with different physical properties for each disk, such as the size of the inner disk being 10 AU, while the size of the outer disk being 300 AU. The shape of the outer disk is a flaring disk not a flat disk according to the value of the power law for the surface density (1.5). The emission in the disk is caused by small amorphous olivine grains rangin

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jan 30 2023
Journal Name
Iraqi Journal Of Science
Study the Effect of Oxygen on Coronene Electronic and Spectroscopic Properties via the Density Functional Theory (DFT)
...Show More Authors

    The electronic properties (such as energy gap HOMO levels. LUMO levels, density of state and density of bonds in addition to spectroscopic properties like IR spectra, Raman spectra, force constant and reduced masses as a function of frequency) of coronene C24 and reduced graphene oxide C24OX , where x=1-5, were studied.. The  methodology employed was  Density Functional Theory (DFT) with Hybrid function B3LYP and 6-311G** basis sets. The energy gap was calculated for C24 to be 3.5 eV and for C24Ox was from 0.89 to 1.6862 eV  for x=1-5 ,respectively.   These energy gaps values are comparable to the measured gap of Graphene (1-2.2 eV). The spectroscopic properties were  compared with experimental measurements, specificall

... Show More
View Publication
Scopus (1)
Scopus Crossref